# 4.5. Newton for nonlinear systems#

The rootfinding problem becomes much more difficult when multiple variables and equations are involved.

Definition 4.5.1 :  Multidimensional rootfinding problem

Given a continuous vector-valued function $$\mathbf{f}$$ mapping from $$\mathbb{R}^n$$ into $$\mathbb{R}^n$$, find a vector $$\mathbf{r}$$ such that

(4.5.1)#$\begin{split}\begin{split} f_1(r_1,\dots,r_n) &= 0,\\ f_2(r_1,\dots,r_n) &= 0,\\ &\vdots\\ f_n(r_1,\dots,r_n) &= 0. \end{split}\end{split}$

Particular problems are often posed using scalar variables and equations.

Example 4.5.2

The steady state of interactions between the population $$w(t)$$ of a predator species and the population $$h(t)$$ of a prey species might be modeled as

$\begin{split} ah - b h w &= 0, \\ -cw + d w h &= 0 \end{split}$

for positive parameters $$a,b,c,d$$. To cast this in the form of (4.5.1), we could define $$\mathbf{x}=[h,w]$$, $$f_1(x_1,x_2) = ax_1 - bx_1x_2$$, and $$f_2(x_1,x_2)= -c x_2 + d x_1 x_2$$.

While the equations of Example 4.5.2 are easy to solve by hand, in practice even establishing the existence and uniqueness of solutions for any particular system is typically quite difficult.

## Linear model#

To extend rootfinding methods to systems, we will keep to the basic philosophy of constructing easily managed models of the exact function. As usual, the starting point is a linear model. We base it on the multidimensional Taylor series,

(4.5.2)#$\mathbf{f}(\mathbf{x}+\mathbf{h}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{h} + O(\| \mathbf{h} \|^2),$

where $$\mathbf{J}$$ is called the Jacobian matrix of $$\mathbf{f}$$ and is defined by

(4.5.3)#$\begin{split}\mathbf{J}(\mathbf{x}) = \begin{bmatrix} \rule[2mm]{0pt}{1em}\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n}\\[2mm] \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n}\\[1mm] \vdots & \vdots & & \vdots\\[1mm] \rule[-3mm]{0pt}{1em} \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} = \left[ \frac{\partial f_i}{\partial x_j} \right]_{\,i,j=1,\ldots,n}.\end{split}$

Because of the Jacobian’s role in (4.5.2), we may write $$\mathbf{J}(\mathbf{x})$$ as $$\mathbf{f}\,'(\mathbf{x})$$. Like any derivative, it is a function of the independent variable $$\mathbf{x}$$.

Example 4.5.3

Let

$\begin{split}\begin{split} f_1(x_1,x_2,x_3) &= -x_1\cos(x_2) - 1\\ f_2(x_1,x_2,x_3) &= x_1x_2 + x_3\\ f_3(x_1,x_2,x_3) &= e^{-x_3}\sin(x_1+x_2) + x_1^2 - x_2^2. \end{split}\end{split}$

Then

$\begin{split} \mathbf{J}(x) = \begin{bmatrix} -\cos(x_2) & x_1 \sin(x_2) & 0\\ x_2 & x_1 & 1\\ e^{-x_3}\cos(x_1+x_2)+2x_1 & e^{-x_3}\cos(x_1+x_2)-2x_2 & -e^{-x_3}\sin(x_1+x_2) \end{bmatrix}.\end{split}$

If we were to start writing out the terms in (4.5.2), we would begin with

$\begin{split}\begin{split} f_1(x_1+h_1,x_2+h_2,x_3+h_3) &= -x_1\cos(x_2)-1 -\cos(x_2)h_1 + x_1\sin(x_2)h_2 + O\bigl(\| \mathbf{h} \|^2\bigr) \\ f_2(x_1+h_1,x_2+h_2,x_3+h_3) &= x_1x_2 + x_3 + x_2h_1 +x_1h_2 + h_3 + O\bigl(\| \mathbf{h} \|^2\bigr), \end{split}\end{split}$

and so on.

The terms $$\mathbf{f}(\mathbf{x})+\mathbf{J}(\mathbf{x})\mathbf{h}$$ in (4.5.2) represent the linear part of $$\mathbf{f}$$ near $$\mathbf{x}$$. If $$\mathbf{f}$$ is actually linear, i.e., $$\mathbf{f}(\mathbf{x})=\mathbf{A}\mathbf{x}-\mathbf{b}$$, then the Jacobian matrix is the constant matrix $$\mathbf{A}$$ and the higher-order terms in (4.5.2) disappear.

## The multidimensional Newton iteration#

With a method in hand for constructing a linear model for the vector system $$\mathbf{f}(\mathbf{x})$$, we can generalize Newton’s method. Specifically, at a root estimate $$\mathbf{x}_k$$, we set $$\mathbf{h} = \mathbf{x}-\mathbf{x}_k$$ in (4.5.2) and get

$\mathbf{f}(\mathbf{x}) \approx \mathbf{q}(\mathbf{x}) = \mathbf{f}(\mathbf{x}_k) + \mathbf{J}(\mathbf{x}_k)(\mathbf{x}-\mathbf{x}_k).$

We define the next iteration value $$\mathbf{x}_{k+1}$$ by requiring $$\mathbf{q}(\mathbf{x}_{k+1})=\boldsymbol{0}$$,

$\begin{split}\begin{split} \boldsymbol{0} &= \mathbf{f}(\mathbf{x}_k) + \mathbf{J}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k),\\ \end{split}\end{split}$

which can be rearranged into

(4.5.4)#$\mathbf{x}_{k+1} = \mathbf{x}_k - \bigl[\mathbf{J}(\mathbf{x}_k)\bigr]^{-1} \mathbf{f}(\mathbf{x}_k).$

Note that $$\mathbf{J}^{-1}\mathbf{f}$$ now plays the role that $$f/f'$$ had in the scalar case; in fact, the two are the same in one dimension. In computational practice, however, we don’t compute matrix inverses.

Algorithm 4.5.4 :  Multidimensional Newton’s method

Given $$\mathbf{f}$$ and a starting value $$\mathbf{x}_1$$, for each $$k=1,2,3,\ldots$$

1. Compute $$\mathbf{y}_k = \mathbf{f}(\mathbf{x}_k)$$ and $$\mathbf{A}_k=\mathbf{f\,}'(\mathbf{x}_k)$$.

2. Solve the linear system $$\mathbf{A}_k\mathbf{s}_k = -\mathbf{y}_k$$ for the Newton step $$\mathbf{s}_k$$.

3. Let $$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$$.

An extension of our series analysis of the scalar Newton’s method shows that the vector version is also quadratically convergent in any vector norm, under suitable circumstances and when the iteration converges at all.

## Implementation#

An implementation of Newton’s method for systems is given in Function 4.5.5. Other than computing the Newton step using backslash and taking vector magnitudes with norm, Function 4.5.5 is virtually identical to the scalar version Function 4.3.6 presented earlier.

Function 4.5.5 :  newtonsys

Newton’s method for a system of equations

 1"""
2    newtonsys(f,jac,x₁[;maxiter,ftol,xtol])
3
4Use Newton's method to find a root of a system of equations,
5starting from x₁. The functions f and jac should return the
6residual vector and the Jacobian matrix, respectively. Returns the
7history of root estimates as a vector of vectors.
8
9The optional keyword parameters set the maximum number of iterations
10and the stopping tolerance for values of f and changes in x.
11
12"""
13function newtonsys(f,jac,x₁;maxiter=40,ftol=1000*eps(),xtol=1000*eps())
14    x = [float(x₁)]
15    y,J = f(x₁),jac(x₁)
16    Δx = Inf   # for initial pass below
17    k = 1
18
19    while (norm(Δx) > xtol) && (norm(y) > ftol)
20        Δx = -(J\y)             # Newton step
21        push!(x,x[k] + Δx)    # append to history
22        k += 1
23        y,J = f(x[k]),jac(x[k])
24
25        if k==maxiter
26            @warn "Maximum number of iterations reached."
27            break
28        end
29    end
30    return x
31end

Demo 4.5.6
function func(x)
[  exp(x-x) - 2,
x*x + x,
x*x + x^2 - x
];
end;

function jac(x)
[
-exp(x-x)  exp(x-x)   0
x            x             1
2*x          x-1           x
];
end;


We will use a BigFloat starting value, and commensurately small stopping tolerances, in order to get a sequence long enough to measure convergence.

x₁ = BigFloat.([0,0,0])
ϵ = eps(BigFloat)
x = FNC.newtonsys(func,jac,x₁,xtol=ϵ,ftol=ϵ);


Let’s compute the residual of the last result in order to check the quality.

r = x[end]
@show residual = norm(func(r));

residual = norm(func(r)) = 0.0


We take the sequence of norms of errors, applying the log so that we can look at the exponents.

logerr = [ Float64( log(norm(r-x[k])) ) for k in 1:length(x)-1 ]
[ logerr[k+1]/logerr[k] for k in 1:length(logerr)-1 ]

7-element Vector{Float64}:
0.7937993447128696
3.6959808854483027
2.4326597889977153
2.3110932374368063
2.1325411149310054
2.029767250340732
2.0340010945857525


The ratio is neatly converging toward 2, which is expected for quadratic convergence.

## Exercises#

1. ✍ Suppose that

$\begin{split}\mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_1x_2+x_2^2-1 \\[1mm] x_1x_2^3 + x_1^2x_2^2 + 1 \end{bmatrix}.\end{split}$

Let $$\mathbf{x}_1=[-2,1]^T$$. Use Newton’s method to find $$\mathbf{x}_2$$.

2. ✍ Suppose that $$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$ for a constant $$n\times n$$ matrix $$\mathbf{A}$$ and constant $$n\times 1$$ vector $$\mathbf{b}$$. Show that Newton’s method converges to the exact root in one iteration.

3. Two curves in the $$(u,v)$$ plane are defined implicitly by the equations $$u\log u + v \log v = -0.3$$ and $$u^4 + v^2 = 1$$.

(a) ✍ Write the intersection of these curves in the form $$\mathbf{f}(\mathbf{x}) = \boldsymbol{0}$$ for two-dimensional $$\mathbf{f}$$ and $$\mathbf{x}$$.

(b) ✍ Find the Jacobian matrix of $$\mathbf{f}$$.

(c) ⌨ Use Function 4.5.5 to find an intersection point starting from $$u=1$$, $$v=0.1$$.

(d) ⌨ Use Function 4.5.5 to find an intersection point starting from $$u=0.1$$, $$v=1$$.

4. Two elliptical orbits $$(x_1(t),y_1(t))$$ and $$(x_2(t),y_2(t))$$ are described by the equations

$\begin{split}\begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} -5+10\cos(t) \\ 6\sin(t) \end{bmatrix}, \qquad \begin{bmatrix} x_2(t)\\y_2(t) \end{bmatrix} = \begin{bmatrix} 8\cos(t) \\ 3+12\sin(t) \end{bmatrix},\end{split}$

where $$t$$ represents time.

(a) ⌨ Make a plot of the two orbits with the following code:

x1(t) = -5+10*cos(t);   y1(t) = 6*sin(t);
plot(x1,y1,0,2pi,aspect_ratio=1,legend=false)
x2(t) = 8*cos(t);   y2(t) = 3 + 12*sin(t);
plot!(x2,y2,0,2pi)


(b) ✍ Write out a $$2\times 2$$ nonlinear system of equations that describes an intersection of these orbits. (Note: An intersection is not the same as a collision—they don’t have to occupy the same point at the same time.)

(c) ✍ Write out the Jacobian matrix of this nonlinear system.

(d) ⌨ Use Function 4.5.5 to find all of the unique intersections.

5. ⌨ Suppose one wants to find the points on the ellipsoid $$x^2/25 + y^2/16 + z^2/9 = 1$$ that are closest to and farthest from the point $$(5,4,3)$$. The method of Lagrange multipliers implies that any such point satisfies

$\begin{split}\begin{split} x-5 &= \frac{\lambda x}{25}, \\[1mm] y-4 &= \frac{\lambda y}{16}, \\[1mm] z-3 &= \frac{\lambda z}{9}, \\[1mm] 1 &= \frac{1}{25}x^2 + \frac{1}{16}y^2 + \frac{1}{9}z^2 \end{split}\end{split}$

for an unknown value of $$\lambda$$.

(a) Write out this system in the form $$\mathbf{f}(\mathbf{u}) = \boldsymbol{0}$$. (Note that the system has four variables to go with the four equations.)

(b) Write out the Jacobian matrix of this system.

(c) Use Function 4.5.5 with different initial guesses to find the two roots of this system. Which is the closest point to $$(5,4,3)$$, and which is the farthest?

6. ⌨ Any three noncollinear points in the plane determine a unique circle. Suppose the points are given as $$(x_i,y_i)$$ for $$i=1,2,3$$. We can define the circle in terms of its center $$(a,b)$$ and radius $$r$$. Then

$f_i(a,b,r) = (a-x_i)^2 + (b-y_i)^2 - r^2$

should be made zero for all $$i=1,2,3$$. This defines a nonlinear system $$\mathbf{f}(\mathbf{v})=\boldsymbol{0}$$ for $$\mathbf{v}=[a,b,r]$$.

Use Function 4.5.5 on this system to find the circle passing through $$(-5,0)$$, $$(1,-3)$$, and $$(4,2)$$. Make a plot that shows you found the correct circle.