This lecture is about the modified Gram-Schmidt method and flop counting. The notebooks are here.
I’m lost.
Almost as an afterthought I decided to add a demonstration of the timing of Gram-Schmidt compared to the asymptotic flop count. Both MATLAB and Julia got very close to the trend as got into the hundreds, using vectorized code:
n_ = collect(50:50:500); time_ = zeros(size(n_)); for k = 1:length(n_) n = n_[k]; A = rand(1200,n); Q = zeros(1200,n); R = zeros(600,600); tic(); R[1,1] = norm(A[:,1]); Q[:,1] = A[:,1]/R[1,1]; for j = 2:n R[1:j-1,j] = Q[:,1:j-1]'*A[:,j]; v = A[:,j] - Q[:,1:j-1]*R[1:j-1,j]; R[j,j] = norm(v); Q[:,j] = v/R[j,j]; end time_[k] = toc(); end using PyPlot loglog(n_,time_,"-o",n_,(n_/500).