
Mathematical Medicine and Biology(2008)25, 187−214
doi:10.1093/imammb/dqn013
Advance Access publication on July 14, 2008

An overset grid method for the study of reflex tearing
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We present an overset grid method to simulate the evolution of human tear film thickness subject to
reflex tearing. The free-surface evolution is governed by a single fourth-order non-linear equation de-
rived from lubrication theory with specified film thickness and volume flux at each end. The model arises
from considering the limiting case where the surfactant is strongly affecting the surface tension. In numer-
ical simulations, the overset grid is composed of fine boundary grids near the upper and lower eyelids to
capture localized capillary thinning referred to as ‘black lines’ and a Cartesian grid covers the remaining
domain. Numerical studies are performed on a non-linear test problem to confirm the accuracy and con-
vergence of the scheme. The computations on the tear film model show qualitative agreement within vivo
tear film thickness measurements. Furthermore, the role of the black lines in the presence of tear supply
from the lid margins, reflex tearing, was found to be more subtle than a barrier to tear fluid flow between
the anterior of the eye and the meniscus at the lid margin. During reflex tearing, tears may flow through the
region normally containing the black line and drift down over the cornea under the influence of gravity.
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1. Introduction

The human tear film is typically thought of as a multilayer structure encapsulated in a time-dependent
region playing a vital role in the health and function of the eye. Figure1 displays the multilayer structure
with the first layer (above the cornea) being a potential mucus layer made of gel-forming mucins whose
existence is still debated. Next is the aqueous layer consisting primarily of water and commonly thought
of as tears. Finally, the lipid layer, which has an outer non-polar layer with polar surfactants at the
aqueous/lipid interface, decreases the surface tension and retards water evaporation.

The time-dependent domain moves in accordance with the blink cycle, comprised of two subsequent
parts in this study: the upstroke or opening of the lids and the inter-blink where the lids are kept open.
Findings on the phenomenon of reflex tearing indicate that one mechanism triggering the onset of tearing
is activation of the sensory nerves in the cornea (Maitchouket al., 2000). Corneal dehydration, cooling
or trauma could be potential triggers, as is the watering of one’s eyes from cutting an onion.

In this work, we study the formation and relaxation of the aqueous layer including the phenomenon
of reflex tearing.King-Smithet al.(2000) published anin vivo tear film thickness measurement taken at
the centre of the cornea in a subject who kept his eyes open for a remarkable 360 s; this ‘six-minute man’
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FIG. 1. A side-view sketch of the pre-corneal tear film, where C denotes the cornea, M the possible mucus layer, A the aqueous
layer, and L the lipid layer. Possible thickness of each layer in microns is also shown.

reported irritation early in the experiment which later disappeared.King-Smith et al. (2000) hypothe-
sized that reflex tears were triggered, causing fluid to travel down the cornea and give relief. We aim to
verify this hypothesis and identify the mechanism causing the resulting thickness dependence as a func-
tion of time. Furthermore, we investigate the difficulty for the tear fluid to break through the ‘black lines’
(local thinning regions near lids) that form during the inter-blink period. Numerical computations are
performed with an overset grid method which can handle localized solution features like the black lines
that exist in tear film. The composite grid contains multiple overlapping grids, which allows fine grids to
be used only where the tear film thickness is known to change rapidly. This speeds up the computation
without degrading accuracy, and facilitates computation on complex domains as discussed below.

We begin with an introduction of human tear film drainage. Pre-corneal tear film drainage after a
blink or relaxation has been studied as a Newtonian film in numerous theoretical works (Wong et al.,
1996; Sharmaet al., 1998; Braun & Fitt, 2003). During relaxation, the tear film evolution is character-
ized by competing viscous and capillary forces. Using lubrication models with gravity and evaporation
absent, all these works found the minimum point in the film (located near the meniscus) to have a thin-
ning time oftα, whereα = −0.45 or−0.46. This thinning time yields reasonable results for tear film
break-up (also known as rupture) times of pre-corneal tear film in healthy eyes.Braun & Fitt (2003)
included the effects of gravity along with evaporation by decoupling the dynamics of the film from the
vapour. Therefore, the film itself determines the film flow and evaporation. Given the parameter values
for eyes, they found the rate of evaporation to be effectively uniform in space and constant in time.
Further, they found gravity redistributes a relatively thick film favouring break-up at the top of the eye.

Joneset al.(2005) combined the two stages of evolution, formation and relaxation, using lubrication
theory. Considering only upper eyelid motion along with fluxes for the upper lid, two models were
studied corresponding to pure tear film or stress-free film (lipid layer has no effect) and a uniformly
stretched tear film/air interface (lipid layer contains a strong soluble surfactant).Joneset al. (2005)
found it to be impossible to form a pre-corneal tear film without influxes from the upper lid during
the upstroke. In particular, film break-up occurs in both models near the upper meniscus with only
80% of the cornea exposed. This supports the finding ofKing-Smith et al. (2004), based on cross-
sectional area measurements, that supply or exposure of the tear film from under the lids is required to
adequately deposit the pre-corneal tear film. The flux function proposed byJoneset al. (2005) resulted
from exposing a pre-existing constant-thickness fluid layer under the upper lid during the upstroke.
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Building upon the formation and relaxation models ofJoneset al. (2005), Heryudonoet al. (2008)
studied the two models described above over multiple blink cycles and partial or half blinks with
realistic lid motion functions fit from observed lid motion data. They developed generalized flux bound-
ary conditions, including supply from the lacrimal gland and drainage through the puncta. In their nu-
merical study, better comparisons toin vivo measured partial blink data were found when using the
uniform stretching limit model coupled with the generalized flux functions.

In this paper, we model the formation and relaxation of the tear film with the uniform stretching limit
model. Since we wish to simulate the relaxation or the inter-blink period for an extended period of time
when compared to the typical blink cycle, the effects of evaporation and gravity will be of importance
and hence included. The end fluxes are modified functions previously used byHeryudonoet al. (2008)
with modification to incorporate reflex tearing.

The lubrication-type problem can be characterized as being of the formht + (hnhxxx)x = 0; fluid
mechanics problems haven = 3, typically, but may have additional terms and equations. The main
difficulties for numerical solution appear to be related to having these terms present, generally speaking.
Numerical methods in previous one-spatial-dimension studies for problems closely related to this form
have used a method of lines approach with differences in choice of spatial approximations and time
integration. Some combinations include finite-difference spatial approximations on uniformly spaced
grids in space with BDF-type solvers in time (e.g.Jensen & Grotberg, 1993; Braun & Fitt, 2003),
the package PDECOL (Madsen & Sincovec, 1979) which implements finite-element discretization in
space (Yeo et al., 2003), spectral spatial approximations on a fixed domain with BDF-type solvers in
time (Haley & Miksis, 1991), a dynamically adaptive finite-difference method specifically designed to
minimize round-off error with a two-level time-stepping scheme (Bertozziet al., 1994) and a positivity-
preserving spatial approximation based on a modified partial differential equation (PDE) that uses finite
differences and requires much less resolution than the original PDE (Zhornitskaya & Bertozzi, 2000).
A mapped spectral discretization coupled with BDF-type solvers in time was used byHeryudonoet al.
(2008) for a closely related problem with moving ends, specifically the tear film evolution over repeated
blink cycles.

The calculations were carried out in this paper with an overset grid method. In an overset grid
method, a PDE is discretized and solved on a composite or overlapping grid developed to handle com-
plex geometries or localized solution features. A composite grid contains multiple structured component
grids, each being topologically rectangular, with interpolation information used for communication be-
tween the separate grids. Composite grids have a number of advantages including the following: simple
grid generation since each component grid is built separately, easy addition or subtraction of bodies or
features and the ability to locally adapt the grid. These appealing features along with the handling of
complex geometries will be of importance when considering tear film flow on the entire anterior sur-
face of the eye. They were first used byVolkov (1966, 1968) to solve Poisson’s equation on regions
with corners (finite domains with piecewise smooth boundaries) and in principle they utilize the same
differencing techniques needed on a Cartesian grid with slight generalization. Code developments in
composite grid generation include CMPGRD tools byChesshire & Henshaw(1990), which later be-
came the OVERTURE framework (Henshaw, 2002); an approach called Chimera grids by Steger and
associates was developed independently at National Aeronautics and Space Administration (NASA)
(Steger & Benek, 1987). Composite grids have been used successfully for numerical simulations in-
cluding non-Newtonian Hele–Shaw flow (Fast & Shelley, 2004). Our discretization is finite difference
based and again leads us towards our destination of simulations on a 2D eye-shaped domain. Previous
work in two dimensions for lubrication-type problems has often used alternating direction implicit
(ADI) methods for spatial approximations on rectangular domains (e.g.Witelski & Bowen, 2003, and
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references therein) but others have used positivity-preserving schemes (Diez & Kondic, 2002) and spec-
tral methods (Ye & Chang, 1999) for spatial approximations. For finding the thin-film flow given by
our particular equations on a moving eye-shaped domain, we believe that the overset grid methods as
implemented in OVERTURE will be quite effective, and so we start towards that goal by using overset
grids in this paper.

After formulating the tear film problem in Section2, we explore the consequences of three different
discretizations of a simplified test problem in Section3 settling on the most accurate and robust method
of the three. Relevant grid parameters for the numerical method are determined from the test problem
and subsequently used on the tear film problem. Results for the tear film model are presented in Section4
with conclusions about the numerical method and reflex tearing.

2. Formulation

First, we present the model for the blink cycle of the human tear film derived from lubrication theory.

2.1 Tear film model

A sketch of the tear film model is shown in Fig.2. Primed variables indicate dimensional quantities. The
corneal surface is modelled as a flat wall (y′ = 0) due to the tear film thickness being so much smaller
than the radius of curvature of the eye surface (seeBerger & Corrsin, 1974). Gravity acts in the positive
x′-direction along the wall with the free-surface depthy′ = h′(x′, t ′) being measured perpendicular to
the wall. The velocity components of the film are denoted by(u′, v′). The lower lid is fixed atx′ = L ′,
while the upper lid moves according tox′ = X′(t ′) with the eye fully open when the upper lid location
is x′ = −L ′.

We begin with the Navier–Stokes equation and scale by the half width of the palpebral fissure
(corneal surface between the two lids),L ′ = 5 mm, in thex′-direction; the characteristic tear film thick-
ness away from the lidsd′ = 5 μm applied in they′-direction; the velocity scale,Um = 10–30 cm/s,
whereUm is a representative maximum blink closing speed (Doane, 1980; Berke & Mueller, 1998),
applied along the tear film; the timescale for real blink speedL ′/Um and the viscous scaleμUm/(d′ε)
applied to the pressurep. The small parameter for lubrication theory is the ratio of the length scales,
ε = d′/L ′, approximately 10−3. Other relevant quantities needed in the derivation are the surface ten-
sionσ0 = 45 mN/m (where subscript 0 denotes evaluation at the reference point corresponding to the
eye fully open with the lowest average surface concentration of surfactant), the densityρ = 103 kg/m3,
the viscosityμ = 10−3 Pa s and the gravitational accelerationg = 9.81 m/s2.

After non-dimensionalization, the leading-order terms in the mass conservation equation and mo-
mentum conservation equation in thex- and y-directions, respectively, govern the following parallel
flow on 06 y 6 h(x, t):

ux + vy = 0, uyy − px + G = 0 and py = 0. (1)

Here,G = ρg(d′)2

μUm
is the Stokes number and under typical blink conditions,G ≈ 2.5 × 10−3. At the

impermeable wall, we have the Navier slip condition (to imitate the effects of the mucus and microplicae
at the corneal surface) and impermeability:

u = βuy and v = 0 at y = 0, (2)

whereβ = L
′

s/d′ andL
′

s is the slip length. Using the estimate inBraun & Fitt (2003), the range ofβ
is 10−3 6 β 6 10−2. At the free surface,y = h(x, t) are the kinematic and normal stress conditions,
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FIG. 2. Coordinate system for tear film evolution model. The upper lid moves according tox′ = X′(t ′), while the bottom lid is
fixed atx′ = L ′.

respectively,

ht + uhx = v − E and p = −Shxx, (3)

with E = J′

Umερ andS = ε3

Ca = ε3σ0
μUm

. Here,J ′ is the evaporation mass flux leaving the surface of the

film is measured atJ ′ = 3 × 10−5 kg m−2 s−1 by Mathers(1993). For the lowest maximum speed,
S ≈ 5 × 10−7 andE ≈ 3 × 10−4. As for the tangential stress condition, in this paper, we consider the
uniform stretching limit where the insoluble surfactant has a very strong Marangoni effect; this causes
the surface to behave as though it is uniformly stretched when the upper lid moves or tangentially
immobile when the lids are stationary. Mathematically, the surface velocity is given by

u(s) = Xt
1 − x

1 − X
; (4)

for a derivation, seeBraun & King-Smith(2007) or Heryudonoet al.(2008). Thus, the Marangoni effect
determines the tangential motion at leading order; we discuss retaining the capillary termShxx at the
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end of this section. Using the kinematic condition and mass conservation, the free-surface evolution
equation defined on the domainX(t) < x < 1 can be written as

ht + qx = −E, (5)

where

q =
∫ h

0
u(x, y, t)dy (6)

is the flux of fluid across any cross-section of the film. In particular, the flux functionq(x, t),

q(x, t) =
h3

12

(
1 +

3β

h + β

)
(Shxxx + G) + Xt

1 − x

1 − X

h

2

(
1 +

β

h + β

)
, (7)

is obtained from the approximate velocity componentu and the uniform stretching limit characterizing
the surface velocity of the film.

The upper lid motion, needed to describe the moving domain for tear film evolution equation, is
derived from relations found byBerke & Mueller (1998), with modification for partial blinks after
Braun and coworkers (Braun & King-Smith, 2007; Heryudonoet al., 2008). The parameterλ represents
the fraction of the fully open domain (corneal surface) that is exposed when the domain is at its smallest
(lids closest together). Therefore, the range of the upper lid is−16 X(t) 6 (−2λ + 1). The lid motion
begins in the closed position with the non-dimensional duration of the upstrokeΔtco = 3.52 (0.1758 s)
followed by the inter-blink periodΔto = 500–3000 (25–150 s).

X(t) =

{
1 − 2λ − 2(1 − λ)

( t
Δtco

)2 exp
[
1 −

( t
Δtco

)2]
, 06 t 6 Δtco

−1, t > Δtco
. (8)

For the tear film model in this paper, the downstroke (closing phase) will not be used as we are studying
only the upstroke and inter-blink periods of the blink cycle. In particular, the focus of reflex tearing study
is on the dynamics of the tear film during the inter-blink period.Joneset al. (2005) noted the presence
of meniscus-induced thinning at the end of the opening period or the upstroke. They also found that
some initial conditions gave reasonable approximations to the film evolution at long times; however, we
choose in this work to make use of the ability to generate the film from the lid upstroke.

At the boundaries, we chose to specify the tear film thicknessh0 as well as the value of the flux
into the domain at the upper and lower lid. To summarize, the model for the evolution of the tear film
thickness is

ht +

[
h3

12

(
1 +

3β

h + β

)

(Shxxx + G) + Xt
1 − x

1 − X

h

2

(
1 +

β

h + β

)]

x

= −E, (9)

on the moving domainX(t) < x < 1 with boundary conditions

h(X(t), t) = h0, h(1, t) = h0, (10)

q(X(t), t) = Xt h0 + Qtop, q(1, t) = Qbot (11)

and initial condition

h(x, 0) = Hmin + (h0 − Hmin)

[
λ − 1

λ
+

x

λ

]m

. (12)
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TABLE 1 Values along with description of the parameters in-
troduced in tear film model formulation. Unless otherwise
stated, these values were used in all simulations discussed in
Section4. All parameters below Um aredimensionless.

Evolution equation and boundary conditions, (5) and (7)
Parameter Description Value
σ0 Surface tension 45 mN/m
ρ Density 103 kg/m3

μ Viscosity 10−3 Pa s
Um Velocity scale 10 cm/s
E Constant evaporation rate 3.0 × 10−4

S Inverse capillary number 5.0 × 10−7

β Slip length 10−3

G Stokes number 2.5 × 10−3

Upper lid motion, (8)
Parameter Description Value
Δtco Duration of upstroke 3.52
Δto Duration of inter-blink 3000
λ Fraction of fully open eye domain 0.1

Detailed initial conditions are given in Section2.2and detailed boundary fluxes are given in Section2.3.
A summary of all the parameters introduced in the formulation of the tear film model is given in Table1.

We note that we have kept the surface tension term involvingShxx in the normal stress condition
despite the small numerical value ofS. We have done so in order to approximate the meniscus region
of the film which requires specifying bothh and the flux of fluidq at the boundary. The relatively slow
movement of the meniscus region in typical tear film observations justifies this approach with regard to
experimental comparison (e.g.Johnson & Murphy, 2006). We are not aware of how to achieve this level
of modelling for this problem without retaining this surface tension term.

2.2 Domain mapping and initial conditions

To conveniently discretize the changing domain length in the tear film equation, we chose to transform
the moving domainX(t) 6 x 6 1 into the fixed domain−16 ξ 6 1 with the mapping

ξ = 1 − 2
1 − x

1 − X(t)
. (13)

The change of variablesh(x, t) = H(ξ(t), t) gives the following relationships for the derivatives in the
PDEs:

ht = Ht − Hξ Xt
1 − ξ

1 − X
, hx = Hξ

2

1 − X
, hxx = Hξξ

(
2

1 − X

)2

, etc. (14)

Given the mapped parameters, it is now easier to describe the initial condition of the tear film prob-
lem. We use the polynomial

H(ξ, 0) = Hmin + (h0 − Hmin)ξ
m, (15)
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whereHmin is found by integrating the polynomial over−1 6 ξ 6 1 and equating it to a specified
area (representing the tear film volume). The parameterm is an even integer ranging from 2 to 16, but
typically usedm = 4.

2.3 Flux functions for reflex tearing

Flux conditions are specified at the boundaries to approximate the drainage flow along with tear supply
along the lid margins. In particular, the conditions are

q(X(t), t) = Xt h0 + Qtop and q(1, t) = Qbot, (16)

whereQtop andQbot are the respective fluxes into the domain at the upper and lower lids. The functions
we use forQtop andQbot are variants of functions proposed byJoneset al.(2005) andHeryudonoet al.
(2008). Joneset al.(2005) assumed that there is a certain flux from under the upper eyelid and therefore
developed the following flux functions, which we designate FPLM for ‘flux proportional to lid motion’:

Qtop = −Xt he and Qbot = 0. (17)

The parameterhe represents the proportion of the tear film thickness being exposed as the upper lid
opens. Using the estimates fromHeryudonoet al. (2008), we chosehe = 0.6. Building upon the FPLM
boundary conditions ofJoneset al. (2005), Heryudonoet al. (2008) included Gaussian functions to
model both the drainage through the puncta and the influx of tear fluid from the lacrimal gland. The
detailed equations for flux functions are of the form

Q+
top = −Xt he − 2 foutQ0p exp

[

−
(

t − tout

Δtp

)2
]

+ ftopQ0lg exp

[

−
(

t − tin
Δtco/2

)2
]

(18)

for the top lid and

Q+
bot = −2(1 − fout)Q0p exp

[

−
(

t − tout

Δtp

)2
]

+ (1 − ftop)Q0lg exp

[

−
(

t − tin
Δtco/2

)2
]

(19)

for the bottom (see Fig.3). The influx from the lacrimal gland is modelled by the terms proportional to
Q0lg, while terms proportional toQ0p represent the drainage through the puncta in the lacrimal drainage
system developed by Doane. The heights of the Gaussian peaks,Q0lg andQ0p, were chosen so that the
average value of the Gaussians over a blink cycle is 1.2 μl/min, which is the estimated steady supply
from the lacrimal gland (Mishimaet al., 1966). Thus, the average drainage flux from the puncta matches
the average lacrimal gland supply over a blink cycle. The influxes from the lacrimal gland and punctal
drainage are distributed between the top and the bottom lid by parametersftop and fout, respectively.
Heryudonoet al. (2008) referred to these boundary conditions as FPLM+.

The new variant includes reflex tearing, which is an aqueous fluid supplied to the tear film from
the lacrimal gland due to external or internal stimuli. Here, we model the influx of reflex tears using the
FPLM+ boundary conditions with the addition of a pulse composed of two hyperbolic tangent functions.
The functions, shown in Fig.3, are of the form

Qtop = Q+
top + gtopQ0r

[
tanh

( t−tron
Δtron

)

2
−

tanh
( t−tron−troff

Δtroff

)

2

]

(20)
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FIG. 3. An example of reflex boundary fluxesQtop andQbot with λ = 0.1.

and

Qbot = Q+
bot + (1 − gtop)Q0r

[
tanh

( t−tron
Δtron

)

2
−

tanh
( t−tron−troff

Δtroff

)

2

]

. (21)

The influx of reflex tears begins aroundt = tron and ends att = tron + troff with non-dimensional
flux Q0r = γ QmT, whereQmT is the non-dimensional flux of the estimated steady supply from the
lacrimal gland of 1.2 μl/min. Here, the stimulus or trigger for the reflex tearing depended only on time
elapsed after the blink, which could correspond to corneal dehydration. The parameterγ was chosen to
be 26 γ 6 9, leading to reflex tear flow rates falling in the range of estimates byFarriset al. (1981) of
5.71±5.86μl/min. As in the FPLM+ boundary conditions, the influx associated with reflex tearing was
interpolated between the upper and the lower lid by the parametergtop. This is possible physiologically
because upper and lower menisci are connected through the canthi (Maurice, 1973). Typical parameter
values for lid motion and fluxes are given in Table2.

3. Numerical methods

Three different numerical approaches, referred to as the ordinary differential equation (ODE),
differential-algebraic equation (DAE) and reformulated ordinary differential equation (RODE) appro-
aches, were investigated on a simplified non-linear test problem. All three numerical methods used the
method of lines coupled with finite differences, but they differed in the enforcement of the flux boundary
conditions. In the method of lines, spatial derivatives are first discretized with time remaining continu-
ous. Then, an appropriate time discretization is used on the resulting system of ODEs for the grid points.
In all time integration calculations, both ODEs and DAEs, we used ‘ode15s’ in MATLAB (Shampine
et al., 1999) which is suitable for stiff ODEs.

The numerical simulations are computed on a composite grid which contains multiple component
grids that cover the domain and overlap where they meet. Each point in the composite grid is designated
as one of the three types: interpolation, discretization or unused. Discretization points are where the PDE
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and boundary conditions are approximated, while interpolation points provide communication between
the different component grids. The solution is found at an interpolation point by the evaluation of an
interpolant built from the solution on the corresponding overlapping grid. Grid points that are neither
interpolation nor discretization points are considered unused grid points.

An example of a typical composite grid we used in the tear film calculation is shown in Fig.4. There
is a total of three component grids with grid points denoted byξk

j for k = 1, . . . , 3 and j = 0, . . . , Nk.

The two fine boundary gridsξ1 andξ3 captured the rapid changes in tear film thicknessH(ξ, t) around
the menisci while the coarse gridξ2 covered the remaining part of the domain. Solution values at the
grid points are denoted byH(ξk

j , t) = Hk
j (t). Two interpolation points are needed on each component

grid at each overlap since the finite differences require the function values of at most two neighbouring
points. We applied explicit interpolation in all calculations, meaning enough overlap is provided to avoid
the coupling of interpolation points on different component grids. All interpolation is performed using
Lagrange polynomials, where the Lagrange basis polynomials are evaluated using barycentric weights
(Berrut & Trefethen, 2004). The barycentric formula exploits a symmetry which minimizes rounding
errors.

To avoid the drastic disparity in grid spacing that can occur in a composite grid containing a fine
grid overlapping a coarse grid as in Fig.4, a grid-stretch function was developed to elongate the spacing
of the fine grid to match the spacing of the coarse grid in the overlap region. It is inefficient to have a
fine grid overlapping a coarse grid since the solution must be smoothly represented on each grid and
thus fine grid points are wasted. The clustering or separating of grid lines is often a main feature in
many software packages that manipulate and create composite or overset grids including OVERTURE
(Henshaw, 2002; Chesshire & Henshaw, 1990). The details of the stretching are given in Appendix A.

Another aspect of the computation investigated was the conservation of volume. The error in volume
conservation is chosen for the non-linear tear film model as an indicator of the accuracy of numerical
schemes since no exact solution is available. For a particular value of time, the volume is defined to be

V(t) =
∫ 1

X(t)
h(x, t)dx =

1 − X(t)

2

∫ 1

−1
H(ξ, t)dξ. (22)

The details of computing this error can be found in Appendix A as well. Next, we formulate a simplified
non-linear test problem and then explain the three different numerical approaches in detail.

FIG. 4. A 1D composite grid with discretization points (open circles) and interpolation points (closed circles).
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3.1 Test problem

In the simplified non-linear test problem, we create a PDE of the form (5) with a space- and time-
dependent forcing term so that the exact solution is

h(x, t) = (h0 − 1)e−[x−X(t)]/x0 + 1.

Here,

X(t) = (1 − λ) cos(t) − λ (23)

for 06 t 6 2π is the prescribed periodic motion of the upper lid corresponding to a sinusoidal complete
blink cycle first studied byBraun(2006) andBraun & King-Smith(2007) (see Fig.2 for the coordinate
system used). Note that the blink cycle for the test problem includes the downstroke or the closing of
the lids, which is again excluded in the reflex tearing study of the tear film to follow. The exact solution
plotted in Fig.5 mimics features seen in the human tear film at the upper lid such as the meniscus and
rapid decay to unity (intended to mimic the characteristic tear film thickness). We study fourth-order
PDEs of the form

ht + qx = g(x, t) (24)

(which only departs from the tear film equation by the non-constant forcing functiong(x, t)) and with
flux function

q(x, t) =
h3

12
Shxxx. (25)

The boundary conditions are

h(X(t), t) = h0, (26)

h(1, t) = (h0 − 1)e−[1−X(t)]/x0 + 1 (27)

FIG. 5. Plot of the exact solutionh(x, t) to the non-linear simplified test problem over one blink cycle for different values oft
with h0 = 9, x0 = 0.2 andλ = 0.09.
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and

q(X(t), t) =
h3

0

12
S

1 − h0

x3
0

, (28)

q(1, t) =
[(h0 − 1)e−[1−X(t)]/x0 + 1]3

12
S

1 − h0

x3
0

e−[1−X(t)]/x0. (29)

Specifying the flux at the boundary boils down to specifying the third derivative of the thicknesshxxx.
The forcing function associated with the non-linear test problem is

g(x, t) =
Xt (t)(h0 − 1)

x0
e−[x−X(t)]/x0

+
[(h0 − 1)e−[x−X(t)]/x0 + 1]2

4

1 − h0

x0
e−[x−X(t)]/x0 S

1 − h0

x3
0

e−[x−X(t)]/x0

+
[(h0 − 1)e−[x−X(t)]/x0 + 1]3

12
S
(h0 − 1)

x4
0

e−[x−X(t)]/x0. (30)

Next, we explain the three numerical methods used to solve the non-linear test problem and subsequently
the reflex tearing calculations. In Sections3.2–3.4, we use the non-linear test problem to describe the
three algorithms in detail.

3.2 ODE approach

In the direct ODE approach, the flux boundary conditions are enforced through the introduction of
fictitious points and direct manipulation of the variableH . The transformed non-linear test problem is

Ht −
Xt (1 − ξ)

1 − X
Hξ +

(
2

1 − X

)[
H3

12
S

(
2

1 − X

)3

Hξξξ

]

ξ

= G(ξ, t), (31)

H(−1, t) = h0, H(1, t) = (h0 − 1)e−[1−X(t)]/x0 + 1, (32)

Hξξξ (−1, t) = −
(

1 − X(t)

2

)3 (h0 − 1)

x3
0

, (33)

Hξξξ (1, t) = −
(

1 − X(t)

2

)3 (h0 − 1)

x3
0

e−[1−X(t)]/x0, (34)

whereG(ξ, t) is the mapped version ofg(x, t). The Dirichlet boundary conditions are imposed simply
by settingH1

0 (t) = h0 and H3
N(t) = (h0 − 1)e−(1−X)/x0 + 1. Satisfying the remaining flux boundary

condition requires more effort. Second-order accurate finite differences are used to approximateHξ ,
Hξξξ andHξξξξ . Using a centred difference to estimateHξξξξ (ξ

1
1 , t) andHξξξ (ξ

1
1 ) requires the addition

of the fictitious pointξ1
−1. The function valueH(ξ1

−1, t) = H1
−1(t) is found by requiring the local

interpolant, which passes through(ξ1
−1, H1

−1(t)), . . . , (ξ1
3 , H1

3 (t)), to satisfy the boundary condition
(33). This leads to a second-order accurate expression forH1

−1(t) in terms ofH1
0 (t), . . . , H1

3 (t) and
Hξξξ (−1, t). A similar approach is used in the approximation ofHξξξξ (ξ

3
N−1, t) which requires the

fictitious pointξ3
N+1. In this approach, we then solve the system of ODEs forHk

j (t) at the interior grid
points.
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3.3 DAE approach

The DAE approach eliminates the need for an approximation of the flux boundary condition by rewriting
the PDE as a semi-explicit DAE of index one with the flux as a new dependent variableQ(ξ, t). The
DAE system for the non-linear test problem with Dirichlet boundary conditions is

Ht −
Xt (1 − ξ)

1 − X
Hξ +

(
2

1 − X

)
Qξ = G(ξ, t), (35)

0 =
H3

12
S

(
2

1 − X

)3

Hξξξ − Q, (36)

H(−1, t) = h0, H(1, t) = (h0 − 1)e−[1−X(t)]/x0 + 1, (37)

Q(−1, t) =
h3

0

12
S
(1 − h0)

x3
0

, (38)

Q(1, t) =
[(h0 − 1)e−[1−X(t)]/x3

0 + 1]3

12
S
(1 − h0)

x0
e−[1−X(t)]/x0, (39)

whereG(ξ, t) is defined above. Second-order accurate finite differences are used to approximateQξ ,
Hξ andHξξξ . For the fluxes at grid points, we defineQ(ξk

j , t) = Qk
j (t). Dirichlet boundary conditions

are enforced by setting the values ofH1
0 (t), H3

N(t), Q1
0(t) andQ3

N(t) from the given boundary values.
In this approach, we solve the resulting DAE system forHk

j (t) andQk
j (t) on the interior grid points.

3.4 RODE approach

Here, we take an ‘ODE approach’ discussed inShampineet al.(1999) when solving a DAE of index one
where standard ODE solvers are implemented with the following variant. When the integrator needs to
evaluate the right-hand side of (35), it first solves the algebraic equation (36) for Q(ξ, t) and the answer
is substituted into (35) resulting in an ODE system. Thus, the flux is computed as an intermediate step
with its own interpolant; the flux is then differenced to updateH . As for the enforcement of the boundary
conditions, at the grid pointξ1

1 , we used the discretization (noteΔξ1 = ξ1
1 − ξ1

0 )

dH1
1 (t)

dt
=

(
Xt (1 − ξ1

1 )

1 − X

)
H1

2 (t) − H(−1, t)

2Δξ1
−
(

2

1 − X

)
Q1

2(t) − Q(−1, t)

2Δξ1
, (40)

where

Q1
2(t) =

[H1
1 (t)]3

12
S

(
2

1 − X

)3 −0.5H(−1, t) + H1
1 (t) − H1

3 (t) + 0.5H1
4 (t)

(Δξ1)3
(41)

is the second-order finite-difference approximation toQ(ξ1
2 , t) found using the Dirichlet boundary con-

dition H(−1, t) = h0. Thus, we solve the resulting ODE system forHk
j (t) on the interior grid points.

Note that we apply the exact flux from the boundary condition at the end points of the domain rather than
computing a difference approximation ofQ found from fictitious points. This seemingly small change
of algorithm has detectable effects on the accuracy and stability of the scheme.
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3.5 Test problem results

We chose the exact solution parameters to beh0 = 9, x0 = 0.2 andλ = 0.09 as in Fig.5 along with
S = 4× 10−5, unless otherwise stated. The composite grid used in the following calculations differs
from the tear film grid shown in Fig.4 by having two component grids, i.e.ξ1 andξ2. The difference is
due to the exact solution having only one meniscus located at the moving end (Fig.5) rather than a me-
niscus at each end as in the tear film. Each component grid has uniform spacing withΔξ = Δξ1 ≈ Δξ2

and overlapping atξ = 0.
We found the ODE approach was not able to compete with the DAE and RODE methods in the

calculation of the non-linear test problem. The ODE code could only execute in a comparable time
to the DAE and RODE method on composite grids containing fewer than 300 grid points. Numerical
investigation reveals the approximation of the fourth derivative and thereforeqx suffers from round-off
error. Figure6 displays the absolute error in the approximation ofqx on a composite grid containing
1000 points. The large error terms are confined to one grid point in the RODE method, while in the ODE
method the large error terms extend a quarter of the way into the computational domain.

In comparing the DAE approach to the RODE approach, we found the latter to be more robust.
In particular, the RODE code executed faster than the DAE code and calculated solutions at least as
accurately. Here, accuracy is measured by the maximum absolute error ofH(ξ, t) for a particular value
of time. Figure7 compares the maximum absolute error of the two different methods on a composite
grid containing 1000 grid points over one cycle of end motion given by (23). Based upon these findings,
the RODE approach was used for all subsequent computations.

A few more findings regarding the RODE approach are relevant here. Figure8 plots the maximum
absolute error (solid line) att = 4.06 as a function of the mesh size(Δξ). The figure also shows how a
least squares fit of the formc(Δξ)α (dashed line) gives the convergence orderα = 2.28. This is strong

FIG. 6. The absolute error in the spatial approximation ofqx = [2/(1 − X)]Qξ at t = 0.01 on a composite grid containing 1000
points by the ODE and RODE method. The maximum in both plots occurs at the left boundary with value 0.0616 in the ODE
method and value 0.0420 in the RODE approach.
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FIG. 7. The maximum absolute error ofH(ξ, t), EA, in the non-linear test problem calculated on a composite grid containing
1000 points over one cycle by the DAE and RODE method.

FIG. 8. The maximum absolute error (solid) att = 4.06 in the non-linear test problem along with the least squares fit curves to
η(Δξ)α , whereα = 2.28 andS = 4 × 10−5.

numerical evidence for second-order accuracy. As for the reliability of the error in volume conserva-
tion as a diagnostic tool, we found it to be a rough indicator of (but not a bound on) the maximum
relative error over a simulation; see Appendix A for more details. It is interesting to note that the size
of the parameterS affects the performance of the RODE method due to error terms from the spatial
approximation of the formS(Hk

j )
3(Δξ)2, whereHk

j can be as large ash0 = 9. Thus, the non-linear test

problem could not be solved withS = 1, but it could be reliably solved with 10−7 6 S6 10−3.
The last item investigated on the test problem was the dependence on the composite grids. Since

the exact solution changed less rapidly on the right half of the interval(0 < ξ < 1), it is possible to
reduce the total number of grid points by using a coarser right-hand grid while still meeting the accuracy
requirement for the computed solution. In particular, results for fine spacingΔξ1 = 1/1500 are shown
in Table3. In the stretched coarse/fine grid, the fine left grid is stretched by the function described in the
Appendix A. The coarse grid spacing isΔξ2 = 6Δξ1.

Based on the findings for the non-linear test problem, we chose a composite grid in tear film cal-
culations with three component grids to capture the rapid changes in each meniscus. One grid spans
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TABLE 2 Values along with description of the non-dimensional parameters
introduced in reflex tearing flux functions. Unless otherwise stated, these val-
ues were used in all simulations discussed in Section4.

Flux functions, (20) and (21)
Parameter Description Value
he Thickness of film from under upper lid 0.6
QmT Estimated steady supply from lacrimal gland 0.01
Q0p Height of punctal drainage Gaussian peak 0.0297
Q0lg Height of lacrimal gland Gaussian peak 0.3371
ftop Fraction of lacrimal gland influx from upper lid 0.65
fout Fraction of punctal drainage from upper lid 0.60
tout Location of punctal drainage Gaussian peak 2Δtp + Δtco
tin Location of lacrimal gland Gaussian peak Δtco
Δtp Width of punctal drainage Gaussian 10
Q0r Height of reflex tearing pulse 4QmT
gtop Fraction of reflex tearing influx from upper lid 0.80
tron Time when reflex tearing pulse starts Δtco + 150
troff Duration of time reflex tearing pulse is on 50
Δtron Width of the on-ramp of the reflex tearing pulse 1/2
Δtroff Width of the off-ramp of the reflex tearing pulse 1

TABLE 3 Comparison of the maximum volume conservation and
absolute error over one cycle on different composite grids for the
non-linear test problem.

Grid Non-lineartest
Grid points max(EV) max(EA)

Both uniform 3009 5.42× 10−4 3.3 × 10−3

Coarse/fine 1771 1.00× 10−3 6.0 × 10−3

Stretched coarse/fine 1668 7.27× 10−4 3.2 × 10−3

the left-hand side of the computational domain, typically [−1, 0], with fine spacingΔξ1 = 1/1501.
The grid is stretched into the coarse centre grid usually passing over [0, 0.3] with Δξ2 = 5/1500.5.
Finally, the last grid spans the right-hand side of the domain, typically [0.3, 1], with Δξ3 = 1/1501 and
is again stretched into the coarse centre grid. Figure9 displays sections of length 0.15 of a typical tear
film computational grid on [−1, 1]. The comparison of the spacing between grid points in Panel 1 and
Panel 2 of the left stretched fine grid (denoted by circles) illustrates the workings of the stretch function
applied to a overlapping grid.

4. Tear film results

We now turn to solve the tear film evolution equation. Experimental measurements of the effect of reflex
tearing have been taken byKing-Smithet al. (2000) and of particular interest are the results for the six-
minute man alluded to in Section1. The single thickness measurement in the centre of the cornea was
obtained by measuring reflection spectra at normal incidence. Fourier analysis of the reflectance spectral
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FIG. 9. A typical distribution of the grid points on [−1, 1] in a tear film model simulation with each panel showing a section of
width 0.15 in the computational domain. Panel 1 (top): fine grid at left end. Panel 2: overlap region of the left stretched fine and
centre coarse grids. Panel 3: overlap region of the centre coarse and right stretched fine grids. Panel 4 (bottom): fine grid at right
end.

yielded, among other data, the tear film thickness in a small spot.King-Smithet al.(2000) observed that
the tear film thinned for the first minute from 3μm to 2μm, then increased to 5μm before decreasing
to 2 μm (see Fig.14 below). In a different subject, the thickness increased to 9μm, which was the
highest measured value observed.King-Smith et al. (2000) hypothesized that there was reflex tearing
causing excess fluid to travel down the cornea giving relief to the irritation. Our computational results
are compared with these findings.

We begin with a computation with the parameter values as in Tables1 and 2 with both gravity
(G = 2.5 × 10−3) and evaporation (E = 3.0 × 10−4) active. In summary, the upstroke occurs in about
0.18 s followed by an inter-blink period where the lids remain open for 150 s. Reflex tearing begins 7.5 s
into the inter-blink period at a rate of 4.8 μl/min and ends 2.5 s later. In all calculations that follow, the
parameters above are used unless otherwise stated.

Figure10 displays the evolution of the film; the left end in the panels corresponds to the upper end
(i.e. upper lid) of the tear film. In the top panel, the film is laid down during the upstroke. The next panel
shows relaxation, characterized by capillary-driven thinning near the lids, creating what is referred to as
black lines in the eye literature (McDonald & Brubaker, 1971; Wonget al., 1996; Creechet al., 1998). In
the third panel is the simulation during the influx from reflex tearing fortron 6 t 6 tron + troff . The film
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is lifted up at the lids as 80% of the constant reflex tears influx enters in through the upper lid and the
remaining 20% in through the bottom. The interior slowly thins with the free surface being tangentially
immobile. The local thinning regions or black lines cause limited resistance to fluid movement when
reflex tearing is turned on. That is, reflex tearing can break through the black-line region. The final panel
displays the relaxation of the tear film for the remaining time period with no-flux boundary conditions.
In the beginning of the relaxation period, gravity drains the upper meniscus causing a bulge of tear
fluid to move down the cornea eventually reaching and lifting up the local thinning region at the lower
lid. After this bulk of fluid drains from the upper meniscus and also before and after the lifting of the
lower black line, there is again capillary thinning near the ends. Throughout the entire relaxation period,
the thickness profile is decreased due to evaporation. We note that we currently cannot continue the
simulation for a full 360 s on account of film break-up at the lower lid.

The film thickness at the centre of the cornea as a function of time during the inter-blink period with
different values ofgtop are shown in Fig.11. The bulge of tear fluid that drains from the upper meniscus
(described above as well as illustrated in Fig.10) causes the jump in the thickness profiles. The decrease
during the first 10 s is credited to evaporation effects since the slope of a fitted linear function for each
curve during this time interval is approximately−2.9 × 10−4 (recall E = 3.0 × 10−4). Therefore,
gravitational and capillary effects balance in the centre of the cornea during this period. For the decrease
in profile at later times, the slope of a fitted linear function for each curve from 100 s until film break-
up ranges from−3.9 × 10−4 to −3.6 × 10−4. Thus, the centre of the cornea is still experiencing a
combination of gravitational and capillary effects after the bulge of tear fluid has passed.

We now focus on the evolution of the tear film during and after reflex tearing and its dependence on
the parameters by observing the thickness in the middle of the film,h(0, t), and its dependence ongtop.
By varyinggtop, we redistribute the influx of tear fluid from reflex tearing between the upper and lower
lid and thus vary the amount of fluid in the upper meniscus. In the beginning of the relaxation period after
the reflex tearing is turned off (Panel 4 of Fig.10), decreasinggtop decreases the gravitational effects
and also increases the capillarity effects relative to the gravity effects. Therefore, asgtop is decreased,
there is more resistance to tear fluid draining down the cornea, resulting in the delay and decrease of the
peak in the centre thickness shown in Fig.11. Furthermore, the size of the peak decreases while the time
interval of the jump increases. We also varied the slip coefficient as is shown in Fig.12. Increasing the
slip toβ = 0.1 results in an earlier arrival of the peak thickness at the centre of the film because the film
is more mobile with increased slip. The centre thickness decreases at the same rate for eithergtop value
once the transient increase is passed. Results forβ = 0 and 10−3 are difficult to distinguish graphically.

It is interesting to note that we can reproduce the centre thickness profile withgtop = 0.50 by
choosing the same parameters exceptgtop = 0.80 andQ0r = 2.5QmT. In both these cases, the area
under the curveQtop during reflex tearing is the same while is the area underQbot is different. The
evolution of the tear film in both cases is shown during relaxation after the reflex tearing has been turned
off in Fig. 13. The difference in the evolution is confined to the bottom quarter of the cornea. Thus, the
centre thickness profile is sensitive to only changes in the influx for the upper meniscus.

Figure14compares the centre thickness from Fig.13, shifted in time to visually align the beginning
of the increase in the profile, with the measurement data found byKing-Smithet al. (2000) and shows
qualitative agreement. Our computation can capture the initial decrease identified as an evaporation
effect, but we are restricted to turn on reflex tearing early (7.5 s) due to tear film break-up at the black
lines. We can also capture the peak caused by gravity draining a pulse of tear fluid down the cornea. The
increase in tear film thickness is comparable with the measured data having a height increase of 2.8 μm
over 20.7 s. A feature missing in our simulations shown thus far, which occurs in the measured data of
King-Smithet al. (2000), is the levelling off for later times. In attempt to capture the levelling off, we
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FIG. 10. Tear film evolution with gravity and evaporation. Panel 1 (top): upstroke of the blink cycle. Panel 2: relaxation before
reflex tearing is turned on. Panel 3: reflex tearing duringtron 6 t 6 tron + troff . Panel 4: relaxation after reflex tearing is turned
off, tron + troff 6 t 6 Δtco + Δto.
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FIG. 11. Film thickness at the centre of the cornea as a function of time (t ′) for different values ofgtop.

FIG. 12. Film thickness at the centre of the cornea as a function of time (t ′) for different values ofgtop andβ.

modified the reflex tearing functions to include an additional constant supply for later times. That is,
rather than having the reflex tearing pulse turn completely off att = tron + troff , the pulse reduces to a
percentage of the original rate (typically 5% or 2%) for the remainder of the simulation.

Figure15 displays the centre thickness measurements of four simulations having the same parame-
ters as in Fig.13with gtop = 0.80 andQ0r = 2.5QmT, but modified reflex tearing function as described
above. In the first case, a constant influx of rateQ0r = 0.3125QmT begins att = tron and remains on
throughout the entire simulation. For the second case, a constant influx of rateQ0r = 2.5QmT begins
at t = tron and att = tron + troff the influx is reduced to 5% ofQ0r for the remainder of the simulation.
In the third case, the influx is now reduced to 2% of the rateQ0r at t = tron + troff . Finally, the fourth
case is the same as the third case exceptQ0r = 2.375QmT. Table4 summarizes the parameters for each
of the cases shown in Fig.15. The modification of the reflex tearing influx does aid in levelling off the
centre thickness profile for long times. In all cases, the bulge of tear fluid from the upper meniscus is
larger and drains down the cornea faster. Furthermore, the tear film thickness stays more or less constant
in the upper meniscus for later times because there is a balance between the influx and the mass loss
due to evaporation. This differs from simulations when the reflex tearing pulse is turned completely off.
In those simulations, the upper-meniscus/black-line region continues to decrease as shown in Panel 4 of
Fig. 10 due the upper meniscus continuing to draw up tear fluid. Case 4 makes the best comparison to
King-Smith et al. (2000) measured data and is plotted in Fig.14, where it has been shifted in time to
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FIG. 13. Relaxation after reflex tearing is turned off,tron+ troff 6 t 6 Δtco+Δto. All parameters are the same as in Fig.11with
gtop = 0.50 for dashed line and for the solid linegtop = 0.80 andQ0r = 2.5QmT.

FIG. 14. Single thickness measurement from the centre of the cornea taken byKing-Smithet al. (2000), the centre of the cornea
film thickness from Fig.13and Case 4 simulation.

visually align with the beginning of the increase in film thickness. As before, we are limited in the total
simulation time due to tear film break-up near the lower lid.

The observation that an elevated film end, i.e. a meniscus, would cause localized film thinning due
to capillarity was first put forward byMcDonald & Brubaker(1971) and illustrated with a puddle of
milk and a paper clip. In their investigation, they observed localized thinning near the lid margins in
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FIG. 15. Film thickness at the centre of the cornea for the four different cases explained in Table4 compared with the simulation
found in Fig.13.

TABLE 4 Reflex tearing flux function parameters for the centre thick-
ness measurements in Fig.15.

Case Q0r , tron 6 t < tron + troff Percentage ofQ0r , tron + troff 6 t
1 0.3125QmT 100
2 2.5QmT 5
3 2.5QmT 2
4 2.375QmT 2

eyes and found that it could lead tear film break-up. Thus, the break-up observed in the computation
may be physically realistic in some circumstances, though this is certainly not the only location where
break-up can occur (Bitton & Lovasik, 1998; Liu et al., 2006). The role of the black line has been taken
to be a barrier to transfer of tear fluid between the film on the anterior of the eye and the meniscus at
the lid margin (Wonget al., 1996; Sharmaet al., 1998). In the absence of reflex tearing, the tear film is
thought to be ‘perched’, i.e. separate from the menisci (Miller et al., 2002). In this last paper, Miller
et al. (2002) assert that lid motion is required to disturb the black line and the perched tear film.

In this paper, we consider the black line in the presence of a tear supply from the lid margins, as
may be expected in reflex tearing, and now the role of the black line appears to be more subtle than
simply being a barrier to fluid flow. We find in our computations that the thin region at the end of the
meniscus does not prevent even relatively small fluxes from the upper lid from breaching that region
with a subsequent pulse or bolus of fluid propagating down the film. In order to get a good comparison
for the data taken from the six-minute man, a relatively large flux is used for reflex tearing which results
in an appropriately sized pulse of fluid that will match the experimental rise in the centre of the tear film.
Thus, provided the flux is not too large (i.e.γ near 2) and the flux returns to zero after the initial pulse
of reflex tears, there remains a local thin region near the meniscus, but it may not be so thin that it may
be termed a black line. If a non-zero flux persists after the initial pulse of reflex tears, according to our
computational results, then there is not really a black-line region near the upper lid after the initial pulse
of reflex tears.

The flux from reflex tearing, together with gravity to help drag the fluid down the film, seems to be
able to supply tear fluid through the black-line region; the amount of fluid passing through depends on
the magnitude and duration of the flux and the change in the middle of thickness of the tear film is rather
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sensitive to the amount of flux. When the reflex tearing is only on for a short duration, then there is only
a temporary increase in the film thickness in the centre of the tear film. With only a small constant reflex
tear flux remaining after a brief stronger period of reflex tearing, the thickness of the tear film stabilizes
at a reasonable value in comparison with experiment.

By adjusting the parameterQ0r , we attempted to identify a minimum influx required to break
through the black line located at the upper meniscus. In all simulations, the minimum tear film thick-
ness in the upper meniscus region lifted up, as in Panel 3 of Fig.10, during the reflex tearing influx to
a thickness that depended uponQ0r ; tear fluid would then drain down the cornea. In some instances,
when Q0r was small, the draining tear fluid would not reach the centre of the cornea before tear film
break-up occurred at the inferior black line (nearx = 1). We note that it is unclear whether the 1D
findings regarding the resistance of the black lines are definitive in eyes since tear fluid entering the
upper meniscus can travel either down the cornea or around the eye in the menisci, and the menisci are
expected to provide less resistance to flow.

5. Conclusion

In this paper, we presented a finite-difference-based overset grid method to calculate solutions to the
non-linear tear film evolution equation. The method was verified on a simplified non-linear test problem
containing the difficult characteristics of the tear film model. The RODE approach was best at addressing
the challenge of flux boundary conditions containing third derivatives. The overset grid significantly
reduced the number of grid points to approximate the different regions where tear film thickness varied
rapidly.

The physiological effect of reflex tearing was modelled and studied finding favourable comparisons
to measured thickness data from the centre of the cornea. For the evolution of the tear film, we chose
the uniform stretched model first proposed byJoneset al. (2005) considering the effects of gravity and
evaporation along with slip in an attempt to model the complex corneal surface more closely. In this
study, realistic lid motion along with flux boundary conditions developed byHeryudonoet al. (2008)
were modified to include a pulse of steady influx from the lacrimal gland attributed to reflex tearing. In
a typical simulation, the upper lid opens fully, capillary-driven thinning creates the black lines at each
lid, reflex tearing is turned on and tear fluid breaks through the black lines lifting the tear/air interface
up at the upper and lower lid, reflex tearing is then turned off or the influx rate is reduced and gravity
effects dominate in the upper meniscus causing a bulge of fluid to drain down the cornea. The tear film
thickness decreases at a constant rate due to evaporation in the absence of other effects such as influx
from the ends.

We studied the simulations of the tear film in the centre of the cornea and identified that the decrease
in the profile initially during the relaxation period was due only to evaporation effects on the timescale
before reflex tearing began. The mechanism causing the sudden increase in the centre of the film for later
times is gravity draining the fluid from the upper meniscus down the cornea. We found that the centre
thickness was sensitive only to the amount of fluid in the upper meniscus after reflex tearing has been
turned off. In general, less input into the upper meniscus caused a increase in capillary effects relative to
the gravitational effects in the upper meniscus, resulting in a slower and smaller pulse moving down the
cornea. In the simulations, we were limited to when reflex tearing was turned on due to film break-up
at the black lines. Also, we could not run the simulation for longer than 150 s due to film break-up. A
reasonable next step that we have begun is to add a disjoining pressure term into the tear film model.

Comparisons with measurements made at the centre of the cornea from one subject taken byKing-
Smith et al. (2000) were made. Overall, we found qualitative agreement with our simulations able to



210 K. L. MAKI ET AL.

capture almost all the different aspects of the centre thickness profile found in Fig.14 but at timescales
that were shorter than those observedin vivo. The centre thickness profile withgtop = 0.50 in Fig.11
provided the best comparison with regard to the formation of peak with a height increase of 2.8μm over
20.7 s. One characteristic of the measured data that was missing from the first results shown was the
levelling off of the tear film thickness for later times. We found that adding a small constant supply of
reflex tears from the upper lid after the initial reflex pulse (t > tron + troff ) caused the centre thickness
to level off with time. Furthermore, in all our simulations, we found the flux from reflex tearing coupled
with the help of gravity pulling the tear fluid down the cornea supplies fluid through the black-line
region.

Extension of the model to a 2D eye-shaped domain will produce new insights into the tear film
formation and dynamics as well as a computational model. In particular, how the flow between the upper
and the lower menisci via the canthi will affect the distribution of reflex tears. Because such a model
can incorporate flow between and along the menisci as well as across the anterior of eye, evaluating
the propensity of the black lines to act as barriers can be more thoroughly addressed. We are currently
working on a computational model via a moving overset grid method using the OVERTURE framework
(Henshaw, 2002).
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Appendix A. Numerical method

A.1 Composite grids

To generate the stretched grids, we created the following piecewise continuously differentiable grid-
stretch function of the form

f (x) =






x, for x ∈ [0, xb],
( x−c

a

)n + b, for x ∈ (xb, x∗],

s(x − x∗) + xe, for x ∈ (x∗, ∞),

wherexe, xb, n ands are specified and the remaining parameters are defined as

a =

[
(xe − xb)n

n
n−1

s
n

n−1 − 1

] n−1
n

, b = xb −
[a

n

] n
n−1

, c = xb −
[

an

n

] 1
n−1

and x∗ =
[
s

an

n

] 1
n−1

+ c.

Since we are interested in stretching the boundary-fitting fine grid with spacingΔ f into the coarse
Cartesian background grid with spacingΔc, n must be chosen less than one. The equally spaced fine
boundary-fitting grid is marked along they-axis while the stretched grid is constructed on thex-axis
using the inverse off (x). By design, the new grid on thex-axis has spacingΔ f on the interval(0, xb),
in the transition region(xb, x∗) the spacing changes smoothly fromΔ f to 1

sΔ f and on the remainder

of the grid the spacing is1sΔ f . We selects =
Δ f
Δc

, while typically n = 1/200 andxe = 0.05 + xb.
The end of the transition regionx∗ depends on the values chosen forn andxe. FigureA.1 illustrates the
stretching of a fine grid with uniform spacingΔ f = 1/20 into a coarse grid with spacingΔc = 1/4
using the parametersxb = 0.1, xe = 0.2, n = 1/200 ands = 1/5. In most cases, the resulting stretched
grid is cut off afterx∗, the transition region, for use in the composite grid since it provided enough
overlap for explicit interpolation.
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FIG. A.1. An example of the stretch function with parametersxb = 0.1, xe = 0.2, n = 1/200 ands = 1/5. Here, the uniform
grid with spacingΔ f = 1/20 is marked along they-axis and the stretched grid is found along thex-axis by the inverse off (x).

FIG. A.2. The maximum relative error (dashed,ER) and maximum absolute error (dash–dot,EA) along with the max volume
conservation error (solid,EV) calculated on a 3000 points composite grid for the non-linear test problem over two cycles.

A.2 Volume conservation calculation

Recall that for a particular value of time the volume of fluid defined in (22). The error in volume con-
servation for a numerically computed solution having volumeV(t) is

EV (t) =

∥
∥
∥
∥V(t) − Vi − h0 [X(t) − X(t0)] +

∫ t

t0
[Q(1, t) − Q(−1, t)] dt

−
∫ t

t0

1 − X(t)

2

∫ 1

−1
G(ξ, t)dξ dt

∥
∥
∥
∥
∥

∞

,

where Vi denotes the initial volume computed exactly from initial data. For the tear film model,
G(ξ, t) = 0. The integral(22) can be rewritten as the initial-value problem

d

dξ
u(ξ) =

1 − X(t)

2
H(ξ, t), u(−1) = 0, ξ > −1, (A.1)
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whereV(t) = u(1) (Trefethen, 2000). Since at any time step, the value ofH(ξ, t) is only known as the
discrete valuesH, the derivative ofu(ξ) is approximated by second-order accurate finite difference on a
single non-uniform grid comprised of all the discretization points in each component grid, i.e. collapsing
all the component grids into on single non-uniform grid. The matrix representation is

Cu =
1 − X(t)

2
H (A.2)

with H = (H(ξ1
0 ), . . . , H(ξ3

N))>. Thus,V(t) is found by multiplication of the last row ofC−1 with
1−X(t)

2 H.
The error in volume conservation is tracked in the tear film model and used as a computational

diagnostic tool to verify the accuracy of the scheme. To assess the reliability of this tool, the maximum of
the relative error and the absolute error are compared with the error in volume conservation in Fig.A.2;
here the non-linear test problem is shown on a composite grid containing 3000 points. The maximum
volume conservation error over time is comparable to the maximum relative error. Therefore, the error
in volume conservation is a rough indicator of, but not a bound on, the maximum relative error over the
simulation.
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