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Computed tear film and osmolarity dynamics on an eye-shaped domain

Longfei Li†, Richard J. Braun∗ and Tobin A. Driscoll

Department of Mathematical Sciences, University of Delaware, Newark, DE 19711, USA
∗Corresponding author. Email: rjbraun@udel.edu

William D. Henshaw

Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Jeffrey W. Banks†

Lawrence Livermore National Laboratory, Box 808, L-422, Livermore, CA 94551-0808, USA

and

P. Ewen King-Smith

College of Optometry, The Ohio State University, Columbus, OH 43218, USA

[Received on May 26, 2014; revised on December 23, 2014; accepted on March 12, 2015]

The concentration of ions, or osmolarity, in the tear film is a key variable in understanding dry eye symp-
toms and disease. In this manuscript, we derive a mathematical model that couples osmolarity (treated as a
single solute) and fluid dynamics within the tear film on a 2D eye-shaped domain. The model includes the
physical effects of evaporation, surface tension, viscosity, ocular surface wettability, osmolarity, osmo-
sis and tear fluid supply and drainage. The governing system of coupled non-linear partial differential
equations is solved using the Overture computational framework, together with a hybrid time-stepping
scheme, using a variable step backward differentiation formula and a Runge–Kutta–Chebyshev method
that were added to the framework. The results of our numerical simulations provide new insight into the
osmolarity distribution over the ocular surface during the interblink.
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1. Introduction

The purpose of the model we develop here is to compute the dynamics of fluid motion and osmolarity
of the tear film on an eye-shaped domain. Osmolarity is the concentration of ions in solution. Given an
1M concentration of NaCl solution, each molecule of salt dissociates into two ions, and the osmolarity
is then 2 M. (Here M denotes molar concentration, which is moles per litre of solvent.) For a brief
introduction to the mathematical models for the osmolarity and tear film dynamics, see the review by
Braun (2012) or the paper by Zubkov et al. (2012).

The osmolarity is an important variable to include in tear film modelling because it is thought to be
critical in the onset and subsequent development of dry eye syndrome (DES). A properly functioning
tear film maintains a critical balance between tear secretion and loss within each blink cycle. Malfunc-
tion or deficiency of the tear film causes a collection of problems that are believed to comprise DES
(Lemp, 2007). DES symptoms include, but are not limited to, blurred vision, burning, foreign body
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sensation, tearing and inflammation of the ocular surface. Studies up to 2007 estimate that there are
4.91 million Americans suffering from DES (Anonymous, 2007). The ocular surface community is
interested in understanding the function of the tear film (Johnson & Murphy, 2004) as well as the inter-
action of tear film dynamics and the connection between tear film volume, evaporation and break-up
with DES (Anonymous, 2007).

We summarize a discussion of the role of osmolarity on the ocular surface from Baudouin et al.
(2013) here. According to Tietz (1995), in healthy blood the osmolarity is in the range 285–295 Osm/m3

(also expressed in mOsm/L or mOsM). In the healthy tear film, there is homoeostasis with the blood in
the range 296–302 Osm/m3 (Tomlinson et al., 2006; Versura et al., 2010; Lemp et al., 2011). In DES,
the lacrimal system is unable to maintain this homoeostasis and osmolarity values in the meniscus rise
to 316–360 Osm/m3 (Gilbard et al., 1978; Tomlinson et al., 2006; Sullivan et al., 2010), and may rise
to even higher values over the cornea. Using in vivo experiment and sensory feedback, Liu et al. (2009)
estimated peak values of 800–900 Osm/m3. Similar or higher values were computed from mathematical
models of tear film break-up in King-Smith et al. (2010b) and Peng et al. (2014). We use a mathematical
model to compute osmolarity over the entire exposed ocular surface subject to the assumptions stated
in the Formulation section.

The method of tear sample collection and measurement is important. To our knowledge, osmolarity
measurements in humans have been from samples in the inferior meniscus or the lower fornix. The
lower fornix has a lower osmolarity than the meniscus (Mishima et al., 1971), and samples from the
meniscus are most commonly used today. Gilbard et al. (1978) summarized the use of prior measure-
ment techniques that used pipettes or capillary tubes to collect tear samples. Older methods may have
used pipettes that took too large a sample compared with the tear film total volume, and could induce
reflex tearing. In the exquisitely sensitive eye, this is a significant concern that could dilute or otherwise
change the chemistry of the tear sample. Some capillary techniques are difficult to use, and the method
of Gilbard et al. (1978) appeared to be easier to use; we note that the paper does not indicate where
in the inferior meniscus the measurement was taken. Subsequent to sample collection, older techniques
relied on freezing point depression to determine the osmolarity of the sample to about 1% error. More
recently, a calibrated resistance measurement using the TearLab device allows rapid determination of
osmolarity with an error for in vitro samples of about 1–2% error (Lemp et al., 2011; TearLab, 2013).
In the approach, a sensor touches the meniscus at the temporal canthus, and the result is returned in less
than a minute after the sample is taken. The latter approach is much more convenient for clinical use.

The level of effectiveness of osmolarity measurement to diagnose dry eye and to measure pro-
gression of the disease is still a matter of debate; for recent viewpoints, see for example Lemp et al.
(2011), Amparo et al. (2013, 2014), Pepose et al. (2014) and Sullivan (2014). We found the summary
by Baudouin et al. (2013) in their Sections 3 and 4 to be informative. We do not aim to settle the
debate here, but to supply context for the measurements in the form of a quantitative prediction of the
osmolarity over the entire exposed ocular surface to aid interpretation.

We now turn to previous work on the properties and dynamics of the tear film, relying heavily
on the introduction from Li et al. (2014). Commonly, the tear film is described as a thin liquid film
with multiple layers. At the anterior interface with air is an oily lipid layer that decreases the surface
tension and retards evaporation, both of which help to retain a smooth well-functioning tear film (Norn,
1979). The aqueous layer is posterior to the lipid layer and consists mostly of water (Holly, 1973).
At the ocular surface, there is a region with transmembrane mucins protruding from the cells in the
corneal or conjunctival epithelia. This forest of glycosylated mucins, called the glycocalyx, has been
referred to as the mucus layer in the past. It is generally agreed that the presence of the hydrophilic
glycocalyx on the ocular surface prevents the tear film from dewetting (Bron et al., 2004; Gipson, 2004;
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COMPUTED TEAR FILM AND OSMOLARITY DYNAMICS ON AN EYE-SHAPED DOMAIN

Govindarajan & Gipson, 2010). The overall thickness of the tear film is a few microns (King-Smith
et al., 2004), while the average thickness of the lipid layer is on the order of 50–100 nm (Norn, 1979;
King-Smith et al., 2011) and the thickness of the glycocalyx is a few tenths of a micron (Govindarajan
& Gipson, 2010). This structure is rapidly reformed, on the order of one second, after each blink in a
properly functioning tear film.

The aqueous part of tear fluid is supplied from the lacrimal gland near the temporal canthus and the
excess is drained through the puncta near the nasal canthus. Mishima et al. (1966) estimated the total
tear volume and the rate of influx from the lacrimal gland, as well as the time for the entire volume
of tear fluid to be replaced (tear turnover rate); Zhu & Chauhan (2005) reviewed experiments on tear
drainage and developed a mathematical model for drainage rates of the aqueous component through the
puncta. Doane (1981) proposed the mechanism of tear drainage in vivo whereby tear fluid is drained
into the canaliculi through the puncta during the opening interblink phase. The drainage stops when
the pressure equalizes in the canaliculi. Water lost from the tear film due to evaporation into air is an
important process as well (Mishima & Maurice, 1961; Tomlinson et al., 2009; Kimball et al., 2010).
This is the primary mechanism by which the osmolarity is increased in the tear film.

The supply and drainage of tear fluid affects the distribution and flow of the tear film. A number of
methods have been used to visualize and/or measure tear film thickness and flow, including interferom-
etry (Doane, 1989; King-Smith et al., 2004; King-Smith et al., 2009), optical coherence tomography
(Wang et al., 2003), fluorescence imaging (Harrison et al., 2008; King-Smith et al., 2013) and many
others. We mention only a small number here that are relevant for our discussion of tear fluid flow
over the exposed ocular surface. Maurice (1973) inserted lampblack into the tear film and watched the
particle trajectories with a slit lamp. He observed that the particle paths in the upper meniscus near
the temporal canthus diverge, with some particles proceeding towards the nasal canthus via the upper
meniscus and others going around the outer canthus before proceeding towards the nasal canthus via the
lower meniscus. (To our knowledge, no images from this experiment exist.) We use the term ‘hydraulic
connectivity’ as shorthand for this splitting of flow connecting the menisci. A similar pattern of the tear
film was observed by Harrison et al. (2008) using fluorescein to visualize the tear film thickness. In
this experiment, concentrated sodium fluorescein is instilled in the eye. Shining blue light on the eye
causes the fluorescein to glow green; the fluorescence allows one to visualize the tear film (Lakowicz,
2006). The concentration is such that if evaporation occurs, the concentration of fluorescein increases
and the intensity of the fluorescence decreases; if fresh tear fluid enters the tear film, the concentration
decreases and fluorescent intensity increases (Webber & Jones, 1986; Nichols et al., 2012; Braun et al.,
2014). Harrison et al. (2008) visualized the entry of fresh tear fluid into the meniscus near the outer
canthus, where the tear film was observed to brighten. Subsequently, this bright region split and fluid
moved towards the nasal canthus along both the upper and lower lids via the menisci. The fluorescence
could thus visualize hydraulic connectivity in the flow of tears. Similar experiments in King-Smith et al.
(2013) and Li et al. (2014) visualized flow by using fluorescein instilled by drops in the tear film, and
the mathematical model developed by Li et al. (2014) exhibited hydraulic connectivity in a very similar
way to the experimental results shown in that paper.

The tear film is also redistributed near the eyelid margins by surface tension. The curvature generated
by the meniscus creates a low pressure which draws in fluid from surrounding areas, creating locally
thin regions near the meniscus. When fluorescein is used to visualize tear film thickness, this locally thin
region near the lids is dark, and had been called the ‘black line’. The black line is typically thought to be
a barrier between the meniscus at the lid margins and the rest of the tear film (McDonald & Brubaker,
1971; Miller et al., 2002). Finally, though the healthy ocular surface is wettable, the tear film may still
rupture; the term break-up is used in the ocular science community for this phenomenon. The surface
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tension of the tear/air interface, the wettability of the ocular surface and the osmolarity are among the
effects that we include in this study.

A variety of mathematical models have incorporated various important effects of tear film dynamics
as recently reviewed by Braun (2012). The most common assumptions for these models are a Newtonian
tear fluid and a flat cornea (Berger & Corrsin, 1974; Braun et al., 2012). Tear film models are often
formulated on a 1D domain oriented vertically through the centre of the cornea with stationary ends
corresponding to the eyelid margins. We refer to models on this kind of domain as 1D models. Surface
tension, viscosity, gravity and evaporation are often incorporated into 1D models (Wong et al., 1996;
Sharma et al., 1998; Miller et al., 2002; Braun & Fitt, 2003). Winter et al. (2010) improved previous
evaporation models by including a conjoining pressure from van der Waals forces that approximated
the wettable corneal surface. Incorporating heat transfer from the underlying eye, Li & Braun (2012)
resolved a discrepancy of the tear film surface temperature between predictions of existing evaporation
models and in vivo measurements.

Recently, studies of 1D models that bring together the interblink period and a moving end that rep-
resents the upper lid have appeared. Jones et al. (2005, 2006) developed models for tear film formation
and relaxation that were unified in this way; one end of the domain moved to model the upper lid motion
during the opening phase of the blink, and then remained stationary for the subsequent relaxation during
the interblink. The tear film was treated as a shear-thinning fluid without elasticity in an otherwise simi-
lar model by Jossic et al. (2009) to try to tailor the viscosity of eye drops to obtain the most uniform tear
film. Braun & King-Smith (2007) modelled eyelid motion for blink cycles by moving one end of the
domain sinusoidally and they computed solutions for multiple complete blink cycles. Heryudono et al.
(2007) followed their study with a more realistic lid motion and specified a flux boundary condition.
Good agreement on tear film thickness between experiments and simulations was found by Heryudono
et al. (2007). Deng et al. (2013, 2014) extended the model of Li & Braun (2012) to include upper lid
motion (blink) and heat transfer from the underlying eye to explain observed ocular surface temperature
measurements and to give new transient temperature results inside the eye. Bruna & Breward (2014)
studied a model that added a dynamic lipid layer to an underlying aqueous layer with an insoluble sur-
factant at the lipid/aqueous interface (representing polar lipids). They computed dynamic results for the
model and found various useful limits for it.

Braun (2012) gave a model for a spatially uniform film with no space dependence that was very
similar to the one first suggested by King-Smith et al. (2007). The original model was a single ordinary
differential equation for the tear film thickness that included evaporation from the tear/air interface at
a constant rate and osmotic flow from the tear/cornea interface that was proportional to the osmolarity
increase above the isotonic value. The latter assumption simplifies the tear/cornea interface to a semi-
permeable boundary that allows water but not solutes to pass. They found that the model predicted
equilibration of the tear film thickness at values greater than the height of the glycocalyx for sufficiently
large permeability of the tear/cornea interface. They also found that the osmolarity could become quite
large as the tear film thinned for small permeability values, as much as 10 times the isotonic value under
some conditions. The model given in Braun (2012) included van der Waals forces that stopped thinning
at the purported height of the glycocalyx which allowed the model to be used at zero permeability at the
tear/cornea interface. Similar conclusions about the osmolarity during thinning were found there.

These models were extended to include a specified evaporation profile that varied in space by King-
Smith et al. (2010b). The evaporation profile was Gaussian with a peak value that could be specified
larger than the surrounding constant rate. The local thinning caused by locally increased evaporation
led to increased osmolarity in the break-up region, which could be several times larger than the isotonic
value. A modified evaporation distribution was created by Peng et al. (2014) that had two parts. One part

126

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/33/2/123/2875345 by U
niversity of D

elaw
are Library user on 07 June 2019
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used an immobile lipid layer with specified thickness and fixed resistance to diffusion through it by
water. The other part was a resistance to transport in the air outside the tear film; this second resistance
included convective and diffusive transport in the air. They also found that the osmolarity was elevated
in this model for break-up.

Zubkov et al. (2012) developed a model describing the spatial distribution of tear film osmolarity
that incorporates both fluid and solute (osmolarity) dynamics, evaporation, blinking and vertical sac-
cadic eyelid motion. They found that both osmolarity was increased in the black line region and that
measurements of the solute concentrations within the lower meniscus need not reflect those elsewhere in
the tear film. This model gave results over a line oriented vertically through the centre of the cornea, and
thus gave information about the osmolarity over more of the ocular surface than the models mentioned
above.

In this paper, we study dynamics of the fluid motion and osmolarity on an eye-shaped domain. To
our knowledge, Maki et al. (2010a,b) were the first to extend models of fluid dynamics in the tear film
to a geometry that approximated the exposed ocular surface. They formulated a relaxation model on a
stationary 2D eye-shaped domain that was approximated from a digital photo of an eye. They specified
tear film thickness and pressure boundary conditions (Maki et al., 2010a) or flux boundary conditions
(Maki et al., 2010b). Their simulations recovered features seen in 1D models such as formation of the
black line, and captured some experimental observations of the tear film dynamics around the lid mar-
gins. Maki et al. (2010b) simplified the in vivo mechanisms and imposed a flux boundary condition
having only spatial dependence (specifying the location of the lacrimal gland and the puncta holes) in
their tear film relaxation model. Under some conditions, they were able to recover hydraulic connectiv-
ity as seen experimentally and described above. Li et al. (2014) improved the model, added evaporation
and a wettable ocular surface, as well as a time-dependent boundary condition that approximated the in-
and out-flow of the aqueous layer of the tear film.

In this paper, we formulate a tear film dynamics model on a 2D eye-shaped domain that, adding to
the previous models, incorporates osmolarity transport and osmosis from the tear/eye interface. To our
knowledge, this is the first such model that includes the osmolarity in a 2D tear film model and that
provides a global osmolarity distribution over the entire exposed eye. The permeability of the ocular
surface is treated as either constant over the whole surface, or as a space-dependent function with lower
permeability over the cornea and higher permeability over the conjunctiva. In the model, the tear film
loses water via evaporation to the air, gains water from the ocular surface, and, via the flux boundary
condition, has water supplied from the lacrimal gland and removed from the puncta. The model adds
significant new results about the distribution of osmolarity over the exposed ocular surface. We believe
that these results will impact the understanding of osmolarity dynamics in the tear film as well as the
measurement of this important quantity.

We begin by formulating the model in Section 2. A brief description of the numerical methods used
for the simulation is discussed in Section 3, followed by detailed results of simulations and comparison
with experiments in Section 4. Conclusions and further directions are pointed out in Section 5.

2. Formulation

In this section, we present a mathematical model that incorporates osmolarity and fluid dynamics into
a tear film model on a 2D eye-shaped domain as shown in Fig. 1. In Fig. 1, (u′, v′, w′) are the velocity
components in the coordinate directions (x′, y′, z′); z′ is directed out of the page and primed variables
are dimensional. By g′, we denote gravity which is specified in the negative y′ direction.
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y’, v’

x’, u’
z’, w’

 t’

n’b

b
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Puncta

s = 0, s = L∂Ω

Lacrimal Gland
Upper lid

Lower lid

Temporal canthusNasal canthus

Fig. 1. The coordinate system and eye-shaped domain. The z′ direction points out of the page.

The boundary curves of the eye-shaped domain are approximated from a digital photo by four
polynomials. Two are parabolas in x′ and two are ninth-degree polynomials in y′, and C4 continuity is
imposed where they join (indicated by dots) (Maki et al., 2010a,b; Li et al., 2014). By s′, we denote the
arc length of the boundary starting at the joint of the nasal canthus and upper lid, and is traversed in
the counterclockwise direction as s′ increases. The unit vectors tangential and normal to the boundary
curves are given by t′b and n′

b, respectively. By z′ = h′(x′, y′, t′), we denote the free surface of the tear
film and t′ is the time.

We assume that the tear fluid is incompressible and Newtonian with constant density ρ, viscosity
μ, specific heat cp and thermal conductivity k. The tear fluid supplied from the lacrimal gland is more
complex than water with salt-ions, containing proteins and other organic molecules (Dartt et al., 2005;
Dartt, 2009). Because these large molecules are present in the tear film, whole tears have been found
to be shear thinning (Tiffany, 1991), though not strongly so. Similar levels of shear thinning were
incorporated by Jossic et al. (2009) and though some details change, the qualitative features of the flow
and thickness distribution are, for our purposes here, similar to the Newtonian case. More recently,
meibum (secreted from the glands in the eyelids) has been found to introduce elasticity into the tear
film when temperature is below 32◦C (Leiske et al., 2011). Note that viscoelastic surfactants can affect
film stability in a model system (Rosenfeld & Fuller, 2012). However, it is not yet clear how these
measurements affect overall tear film properties at typical in vivo operating temperatures that are often
near 35◦C (Efron et al., 1989). Because our current knowledge indicates that the shear thinning of the
tear film is not strong (Tiffany, 1991) and because viscoelastic surface effects appear to be small at in
vivo temperatures (Leiske et al., 2012), we make the simplifying assumption of constant properties.

We also assume the ocular surface is flat due to the fact that the characteristic thickness of the
human tear film is much less than the radius of curvature of the ocular globe (Berger & Corrsin, 1974;
Braun et al., 2012). The governing equations for the tear film thickness h′(x′, y′, t′) and the osmolar-
ity c′(x′, y′, t′) are derived from the incompressible Navier–Stokes and convection–diffusion equations,
respectively. The two equations are coupled by the osmotic flux, that is, the fluid that flows from the
ocular surface at z′ = 0 into the tear film driven by the osmolarity difference between the tear film and
the cornea (Levin & Verkman, 2004). In the model, water is lost to the air, treated as a passive gas
outside the tear film (z′ > h′), and water is supplied due to the subsequent increased osmolarity via this
osmotic flux.

After non-dimensionalization and simplification using lubrication theory (e.g. Jensen & Grotberg,
1993; Braun, 2012), we arrive at a system of partial differential equations (PDEs) for the dimensionless

128

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/33/2/123/2875345 by U
niversity of D

elaw
are Library user on 07 June 2019
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variables h(x, y, t) and c(x, y, t):

∂th + EJ + ∇ · Q − Pc(c − 1) = 0, (2.1)

h∂tc + ∇c · Q = EcJ + 1

Pec
∇ · (h∇c) − Pc(c − 1)c. (2.2)

The evaporative mass flux J is given by

J = 1 − δ(SΔh + Ah−3)

K̄ + h
,

and the fluid flux Q across any cross-section of the film is given by

Q = h3

12
∇(SΔh + Ah−3 − Gy).

The conjoining pressure in modelling evaporation plays an important role in the tear film model. It
is meant to mimic the effect of the glycocalyx, whose transmembrane are strongly wet by water and
we assume that they arrest the thinning of the tear film. A secondary benefit is that the model allows
solutions to be computed past the initial tear film break-up because the tear film thickness never reaches
zero in this model. These aspects of evaporation competing with conjoining pressure are discussed by
Winter et al. (2010) in the context of eyes, but the idea was developed by Potash & Wayner (1972) and
Moosman & Homsy (1980). More recent versions of the approach may be found in Morris (2001) and
Ajaev & Homsy (2001). The non-dimensional parameters that arise are defined and given values in the
following section and in Table 1. The dimensional parameters used in those expressions are given in
Table 2. A detailed derivation of the governing Equations (2.1) and (2.2) can be found in Appendix A.

2.1 Parameter descriptions

Lubrication theory exploits the small value of ε, which is the ratio of the tear film thickness to the length
scale along the tear film; E characterizes the evaporative contribution to the surface motion, δ measures
the pressure influence to evaporation, S is the ratio of surface tension to viscous forces, A is the Hamaker
constant in non-dimensional form related to the unretarded van der Waals force, G is the ratio of gravity
to the viscous force, K̄ represents the non-equilibrium parameter that sets the evaporative mass flux, Pec

is the Péclet number for the osmolarity describing the competition between convection and diffusion
and Pc is the water permeability of the ocular surface (Pcorn and Pconj specify the values of Pc over the
cornea and conjunctiva, respectively).

Evaporation makes major contributions to tear film thinning between blinks (Kimball et al., 2010
and references therein) and increases the osmolarity of tears, which in turn induces an osmotic flow
through the ocular surface that compensates for much of the evaporative water loss. Nichols et al. (2005)
have found that the mean rate of thinning of the pre-cornea tear film is 3.79 ± 4.20 µm/min, and the his-
togram of their measurements shows an asymmetrical distribution, with narrow peaks corresponding to
a thinning rate of ∼1 µm/min but with many instances of much more rapid thinning (King-Smith et al.,
2010a, as well). Based on these experimental measurements, we tune the non-equilibrium parameter K̄
that sets the evaporative mass flux such that the thinning rate of the flat tear film (i.e. neglecting all the
spatial derivatives) is 4 µm/min. The model does not take into account transport or the relative humidity
outside the tear film as in Peng et al. (2014); it is suitable for controlled laboratory conditions.
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Table 1 Dimensionless parameters. Values and descriptions of the
dimensional parameters appeared are given in Table 2.

Parameter Expression Value

ε
d ′

L′ 1 × 10−3

E
k(T ′

B − T ′
s)

d ′LmερU0
118.3

S
σε3

μU0
6.92 × 10−6

K̄
kK

d ′Lm
8.9 × 103

G
ρg(d ′)2

μU0
0.05

δ
αμU0

ε2L′(T ′
B − T ′

s)
4.66

A
A∗

L′dμU0
2.14 × 10−6

Pec
U0L′

Dc
9.62 × 103

Pcorn
Ptiss

cornvwc0

εU0
0.013

Pconj
Ptiss

conjvwc0

εU0
0.06

2.2 Permeability of the ocular surface

The ocular surface is believed to be permeable, and the induced osmotic flow helps to arrest tear film
thinning and hence ameliorate osmolarity elevation (Braun, 2012). In addition, the water permeability
over the ocular surface is not a constant; the conjunctiva is normally more permeable than the cornea
(Dartt, 2002). King-Smith and coworkers proposed values for the water permeability of the ocular sur-
face, that is, 12.0 µm/s for the cornea and 55.4 µm/s for the conjunctiva (King-Smith et al., 2010b;
Bruhns et al., 2014). We use these values to determine the dimensionless permeability Pc in the model
as follows: we first define the corneal region as a unit circle with the centre Xc = (0.05, 0.225) in the
domain shown in Fig. 1, and the variable permeability at any position X = (x, y) is then defined as

Pc(x, y) = Pconj − Pcorn

2
tanh

( |X − Xc| − 1

x0

)
+ Pconj + Pcorn

2
. (2.3)

Here Pconj = 0.06 is the dimensionless permeability of conjunctiva, Pcorn = 0.013 is the dimensionless
permeability of cornea and |X − Xc| is the distance between points X and Xc. Here x0 is the width
of the transition between the different permeabilities. We typically used x0 = 0.05 which corresponds
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Table 2 Dimensional parameters.

Parameter Description Value Reference

μ Viscosity 1.3 × 10−3 Pa·s Tiffany (1991)

σ Surface tension 0.045 N·m−1 Nagyová & Tiffany (1999)

k Tear film thermal conductivity 0.68 W·m−1·K−1 Water

ρ Density 103 kg·m−3 Water

Lm Latent heat of vaporization 2.3 × 106 J·kg−1 Water

T ′
s Saturation temperature 27◦C Estimated

T ′
B Body temperature 37◦C Estimated

g Gravitational acceleration 9.81 m·s−2 Estimated

A∗ Hamaker constant 3.5 × 10−19 Pa·m3 Winter et al. (2010)

α Pressure coefficient for evaporation 3.6 × 10−2 K·Pa−1 Winter et al. (2010)

K Non-equilibrium coefficient 1.5 × 105 K·m2·s·kg−1 Estimated

d ′ Characteristic thickness 5 × 10−6 m King-Smith et al. (2004)

L′ Half-width of palpebral fissure 5 × 10−3 m Estimated

U0 Characteristic speed 5 × 10−3 m/s King-Smith et al. (2009)

Ptiss
corn Tissue permeability of cornea 12.0 µm/s King-Smith et al. (2010b)

Ptiss
conj Tissue permeability of conjunctiva 55.4 µm/s King-Smith et al. (2010b)

vw Molar volume of water 1.8 × 10−5 m3·mol−1 Water

Dc Diffusivity of osmolarity in water 2.6 × 10−9 m2/s Zubkov et al. (2012)

Fig. 2. Variable permeability distribution over the ocular surface with x0 = 0.05.

to a physically realistic value of 0.25 mm dimensionally. We found that the results were insensitive
to changes in x0 around this value. Figure 2 plots the distribution of the variable permeability on the
eye-shaped domain.

2.3 Boundary conditions

Along the boundary of the eye-shaped domain (denoted as ∂Ω), we prescribe the constant tear film
thickness

h|∂Ω = h0. (2.4)
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Fig. 3. Time sequences of fluid flux boundary condition during one flux cycle.

We set h0 = 13 in the computation because this choice is in the range of experimental measurement
(48–66 µm or 9.6–13.2 non-dimensionally) from Golding et al. (1997). In addition, we specify the
normal component of the fluid flux,

Q · nb = Qlg(s, t) + Qp(s, t), (2.5)

according to the mechanism of Doane (1981) for tear supply and drainage, and the tear drainage model
of Zhu & Chauhan (2005), but with simplification regarding blinking. This fluid flux boundary condition
mimics some effects of blinking by providing a time-dependent influx through the lacrimal gland and
efflux through the puncta. Specifically, the lacrimal gland supply turns on at the beginning of a flux
cycle, and the punctal drainage follows one time unit later. Both the supply and drainage start to shut off
at t = 5. The duration of a complete flux cycle in the model is Δtbc = 10. In Fig. 3, we show a sequence
of images of the fluid flux boundary condition (2.5) within a flux cycle. At t = 0 (Fig. 3a), there is zero
fluid flux on the boundary. At t = 0.5, we see that the lacrimal gland supply is fully on while the drainage
does not yet start in Fig. 3b; the drainage begins at t = 1. In Fig. 3c, both supply at the lacrimal gland
and drainage at the two puncta holes remain fully on. Then, the fluid flux turns off at t = 5 and remains
zero until the end of a flux cycle (t = 10) as shown in Fig. 3d. The influx and efflux are balanced in each
flux cycle. See Appendix B and Li et al. (2014) for the detailed formula and a supplementary movie for
the time-dependent flux boundary condition (2.5).

For the osmolarity c(x, y, t), we consider two limiting cases for the boundary conditions in this paper.
Case (i) is the Dirichlet boundary condition

c|∂Ω = 1; (2.6)

this represents perfect exchange between the tear film and idealized isotonic tear fluid supply under the
lids (in the fornices). Case (ii) is the homogeneous Neumann boundary condition

∇c · nb|∂Ω = 0; (2.7)
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COMPUTED TEAR FILM AND OSMOLARITY DYNAMICS ON AN EYE-SHAPED DOMAIN

(a)

(b)

Fig. 4. Smoothed initial conditions for h and p. (a) Initial tear film thickness. The band around the outer edge indicates tear film
thickness h �3. (b) Initial pressure distribution.

this case represents a complete lack of exchange of osmolarity between the tear film and the tear fluid
under in the fornices. In the results that we have computed, the results are quite similar for these two
cases; this fact will be discussed further in Section 4.

2.4 Initial condition

The initial condition h(x, y, 0) is specified based on a numerically smoothed version of the function

h(x, y, 0) = 1 + (h0 − 1) e− min(dist((x,y),∂Ω))/x0 , (2.8)

where x0 = 0.06 and dist(X, ∂Ω) is the distance between a point with position vector X and a point on
the boundary ∂Ω (Maki et al., 2010a,b). It specifies a dimensional initial volume of about 1.805 µl. This
value is well within the experimental measurements by Mathers & Daley (1996), who found the volume
of exposed tear fluid to be 2.23 ± 2.5 µl. The initial pressure p(x, y, 0) is calculated from Equation (3.2)
accordingly (Li et al., 2014). Figure 4 shows the initial thickness h and pressure p that are implemented
in the numerical simulations. For the initial osmolarity, we assume the salt-ions are well mixed and of
the isosmotic physiological salt concentration (302 Osm/m3, or 1 nondimensionally) at the beginning,
thereby specifying

c(x, y, 0) = 1. (2.9)
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3. Numerical methods

For numerical purposes, we rewrite the model equations by introducing the pressure p(x, y, t) as a new
dependent variable:

∂th + E
1 + δp

K̄ + h
+ ∇ ·

[
− h3

12
∇(p + Gy)

]
− Pc(c − 1) = 0, (3.1)

p + SΔh + Ah−3 = 0, (3.2)

h∂tc + ∇c ·
[
− h3

12
∇(p + Gy)

]
= Ec

1 + δp

K̄ + h
+ 1

Pec
∇ · (h∇c) − Pc(c − 1)c. (3.3)

The corresponding boundary conditions must be applied: (2.4), (2.5) and one of (2.6) or (2.7). Note that
the flux condition (2.5) is readily converted into a Neumann condition on p. The initial conditions must
be applied as well, using smoothed versions of (2.8) and (3.2), as well as (2.9).

We solve the Equations (3.1–3.3) on the eye-shaped geometry (Fig. 1) using the Overture compu-
tational framework (http://www.overtureframework.org, Last accessed 24 March 2015. Primary devel-
oper and contact: W. D. Henshaw, henshw@rpi.edu), which is a collection of C++ libraries for solving
PDEs on complex domains (Chesshire & Henshaw, 1990; Henshaw, 2002).

3.1 Computational grid

The tear film is relatively thin and flat in most of the interior of the exposed ocular surface; the thickness
increases rapidly near the eyelids forming relatively steep menisci around the boundary of correspond-
ing computational domain. In order to solve the tear film model efficiently, we use five component grids,
whose union is the computational grid. The component grids are one Cartesian background grid that
has grid lines aligned with the coordinate axes, and four boundary-fitted grids near the boundary. The
solution values are interpolated between grids where they overlap. We generated a new computational
grid using the grid generation capabilities of the Overture computational framework. We extend the
boundary-fitting grids from the boundary using transfinite interpolation, which is a generalized shearing
transformation that maps the unit square onto the region bounded by four curves (Chesshire & Henshaw,
1990; Henshaw, 2002). Unlike grids based on extending normals from the boundary, we can extend the
boundary-fitting grids as much as we want without worrying about intersecting normal lines. This pro-
vides us with the boundary-fitting grids that are wide enough to cover the menisci of the tear film. In
addition, we double the grid spacing for the background Cartesian grid to reduce the number of grid
points compared with previous work (Maki et al., 2010a,b; Li et al., 2014). The new grid, plotted in
Fig. 5, reduces the total number of grid points by about 14% while achieving better overall accuracy for
test problems (the new grid has a total number of 235,018 grid points). Unless otherwise noted, all the
simulation results presented in this paper are computed using the computational grid in Fig. 5.

3.2 A hybrid time-stepping scheme

To solve the Equations (3.1–3.3), we first discretize the spatial derivatives using the second-order
accurate finite difference method for curvilinear and Cartesian grids from Overture. Since the model
Equations (3.1–3.3) are weakly coupled by osmosis (terms involving Pc), we developed a hybrid time-
stepping scheme to solve the coupled system: we first solve the Equation (3.3) for c using a dynamic
explicit Runge–Kutta–Chebyshev (RKC) method (Sommeijer et al., 1997); then we update the h and p
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COMPUTED TEAR FILM AND OSMOLARITY DYNAMICS ON AN EYE-SHAPED DOMAIN

Fig. 5. Computational grid on the eye-shaped domain.

Equations (3.1) and (3.2) and solve them using the variable step size backward differentiation formula
(BDF) method with fixed leading coefficient based on Brenan et al. (1996) and Maki et al. (2010a,b).
The resulting non-linear system of the BDF method is solved using Newton’s iteration method. Solu-
tions on different component grids are coupled by interpolation. The RKC method is suitable for this
problem because it has an extended stability region with a stability bound that is quadratic in the num-
ber of stages, and the explicit method is fast and easy to implement. We exploit the non-linear power
method for an estimation of the largest eigenvalue of the spatially discretized system from (3.3) for c,
and we use the quadratic relation to determine the number of stages needed for the RKC method. We
have empirical criteria to determine whether an approximation is accepted or not. The number of stages
is updated at every successful time step. More detailed results regarding the numerical analysis and
performance of this method will appear elsewhere, since our focus is on the tear film here.

4. Results

In this section, we present computed results for the tear film thickness h(x, y, t) and the osmolarity
c(x, y, t) on the 2D eye-shaped domain. We vary the water permeability Pc and the thinning rate (evap-
oration) that sets the non-equilibrium parameter K̄ to study their influence on the dynamics of both
tear film and osmolarity. We also explore two types of boundary condition for the osmolarity c(x, y, t):
(i) Dirichlet, given by (2.6), and (ii) homogeneous Neumann, given by (2.7).

4.1 Constant non-zero permeability

We begin by presenting results for the model with the same constant water permeability over the whole
ocular surface; we use the corneal permeability corresponding to Pc = 0.013 measured by King-Smith
et al. (2010b) and Bruhns et al. (2014). Figure 6 shows the contours of the simulation results. The
left column represents the tear film thickness, and the right column represents the osmolarity. We see
the dark band (blue online) set inside of the boundary, representing the so-called black line, emerges
rapidly near to and inside of the menisci in the left column. The black line develops due to capillary
action resulting from the positive curvature of the menisci generating a low pressure that sucks fluid
into the meniscus. A local minimum thus forms near the meniscus, and is referred to as the black line.
In addition, the canthi in the 2D eye-shaped domain induce a second direction of curvature, creating
an even lower pressure that attracts fluid towards themselves. Therefore, the tear film near the two
canthi is often thinner than other parts of the black line. In this case, the global minimum is located
near the nasal canthus, which is sharper (more curved) than the temporal canthus. The formation of
the global minimum is also promoted by the efflux of fluid near the nasal canthus due to the boundary
conditions that mimic punctal drainage from this region. This also shows that both the thickness and

135

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/33/2/123/2875345 by U
niversity of D

elaw
are Library user on 07 June 2019



L. LI ET AL.

Fig. 6. Contours of tear film thickness (left column) and osmolarity (right column) with constant permeability of Pc = 0.013 all
over the exposed ocular surface and with Dirichlet boundary condition (2.6) on the osmolarity. The thinning rate is 4 µm/min.

osmolarity vary significantly away from the vertical line through the centre of the cornea. Note 1D
models formulated along this line do not account for this variation. The redistribution of fluid due to
surface tension also causes a small ridge to form on the interior side of the black line. This is seen
as a diffuse light band in the left column of Fig. 6. This light band is a ridge that has been seen in a
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Fig. 7. Cross-sectional plots through the vertical line x = 0 with Pc = 0.013 and Dirichlet boundary condition (2.6). The thinning
rate is 4 µm/min and the upper eyelid is located on the positive side of the y-axis. (a) Tear film thickness. (b) Osmolarity.

number of other studies (Maki et al., 2010a,b; Li et al., 2014). The tear film thickness in the interior
decreases steadily throughout the computation because of evaporation; this is visualized by the continual
darkening of the interior in the contour plots.

The corresponding osmolarity contours are plotted in the right column of Fig. 6. Generally, the
osmolarity increases more where the tear film is thinner, such as in the black line and canthi regions.
This is in qualitative agreement with the results of Zubkov et al. (2012); we return to a direct comparison
with their 1D results for Pc = 0 in the next section. The global maximum of osmolarity is in the nasal
canthus that corresponds to the location of thinnest tear film. In the osmolarity plots, we observe a
bright band indicating that a region of elevated osmolarity is forming near the developing black line.
Osmolarity in the interior continues to increase as a result of evaporation, and the interior of the eye-
shaped domain becomes brighter in the plots. In the region where the tear film forms a small ridge,
a corresponding darker band is also present on the interior side of the brighter band in the osmolarity
plots.

The vertical cross-sectional plots (x = 0), shown in Fig. 7, illustrate more directly the correlation
between the tear film thickness and osmolarity: the osmolarity is roughly the reciprocal of the tear
film thickness except in the black line and meniscus regions. Furthermore, comparison with the zero
permeability case in the next section also reveals the effects of osmosis: the tear film is slightly thicker
while the osmolarity is obviously smaller for the constant non-zero permeability case.

4.2 Zero permeability

Now, we consider our model on an impermeable ocular surface, i.e. Pc = 0, so as to reveal the effect of
osmosis by comparing with the previous results in Section 4.1, and we make comparisons with existing
studies on 1D domains to show that our model provides consistent predictions. In this case, no water is
supplied in response to the increased osmolarity that occurs when water evaporates from the tear film.
Figure 8 shows the contours of both tear film thickness and osmolarity on the eye-shaped domain at
t = 25. It shows that both the thickness and osmolarity vary significantly away from the vertical line
through the centre of the cornea. For example, the global minimum of tear film thickness is located in
the nasal canthus and is much smaller than that in the cross-sectional plot. Furthermore, there is a spike
in the osmolarity contour with a global maximum as large as max(c) = 4.8031 in the nasal canthus.
These global extrema and their locations cannot be found via 1D models, and to our knowledge are
not available from clinical measurements either. From Fig. 8, we also see more elevated osmolarity at
the black line region, and the lowest concentration is located near the lacrimal gland as a result of the
fresh tear supply. The tear film dynamics predicted by this model are in agreement with previous results
(Li et al., 2014).
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Fig. 8. Contours of tear film thickness (left) and osmolarity (right) with Pc = 0 and Dirichlet boundary condition (2.6). The
thinning rate is 4 µm/min.

Table 3 Extreme values for various cases; Pc(x, y) denotes the variable permeability case and is given
by Equation (2.3).

Thinning rate: 4 µm/min 10 µm/min 20 µm/min

Pc = 0 Pc = 0.013 Pc(x, y) Pc(x, y) Pc(x, y)

min(h(x, y, 5)) 0.2043 0.2050 0.2070 0.1880 0.1557
min(h(x, y, 10)) 0.1072 0.1142 0.1294 0.1102 0.0931
min(h(x, y, 15)) 0.0819 0.0847 0.0899 0.0722 0.0506
min(h(x, y, 20)) 0.0716 0.0944 0.1118 0.0906 0.0471
min(h(x, y, 25)) 0.0343 0.0454 0.0492 0.0382 0.0268

max(c(x, y, 5)) 1.1135 1.1069 1.0873 1.2392 1.5629
max(c(x, y, 10)) 1.3925 1.3132 1.1722 1.5091 2.7505
max(c(x, y, 15)) 1.6975 1.4593 1.2673 1.9892 5.3456
max(c(x, y, 20)) 2.4841 1.6448 1.3852 2.6045 5.9684
max(c(x, y, 25)) 4.8031 1.7733 1.5124 3.1486 6.0538

The effect of osmosis can be readily seen by comparing the extreme values of different perme-
ability cases. The extreme values of both h and c for several cases we considered in this paper are
listed in Table 3. For the constant non-zero permeability case (Pc = 0.013), the minimum thickness
(min(h) = 0.0454) is slightly larger than that with zero permeability (min(h) = 0.0343) at t = 25. How-
ever, the peak of osmolarity is significantly reduced by osmotic flows: max(c) = 1.7733 with constant
permeability and max(c) = 4.8031 with zero permeability at t = 25. Therefore, according to our compu-
tation, we conclude that the presence of osmotic flux across the corneal surface may protect the tear film
from excessive hyperosmolarity which could cause damage to the ocular surface and/or denaturation of
tear film mucins and proteins (Govindarajan & Gipson, 2010).

Zubkov et al. (2012) studied a system that included both tear film and osmolarity dynamics on a
1D domain with a moving end that mimicked blinks; their model assumes that the ocular surface is
impermeable. To compare with their model, we set Pc = 0 and show the cross-sectional plots through
the vertical line x = 0; the results are in Fig. 9. The cross-sectional curves of our results on the 2D
eye-shaped domain are comparable to the 1D results of Zubkov et al. (2012) during the interblink
phase for both the tear film thickness (Fig. 9a) and the osmolarity distribution (Fig. 9b), except that the
development of the black line is slower and the maximum osmolarity is higher in our results. The slower
development of the black line in our results is due to the stationary domain, because the formation of
the black line begins during the opening phase according to previous results on 1D blinking domains
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Fig. 9. Cross-sectional plots through the vertical line x = 0 with Pc = 0 and Dirichlet boundary condition (2.6). The thinning rate
is 4 µm/min and the upper eyelid is on the positive side of the y-axis. (a) Tear film thickness. (b) Osmolarity.

(Jones et al., 2005; Braun & King-Smith, 2007; Heryudono et al., 2007; Maki et al., 2008; Zubkov et al.,
2012). Nevertheless, the behaviour of the tear film thickness in our model is in line with many previous
results of 1D models with stationary ends (Braun & Fitt, 2003; Winter et al., 2010; Li & Braun, 2012).
The difference between the values of osmolarity stemmed from the different assumptions of the thinning
rate and our longer time for computing the solution. The thinning rate in the model of Zubkov et al.
(2012) is assumed to be 0.24 µm/min, which is much smaller than most of the observations of Nichols
et al. (2005) and our choice of 4 µm/min. Zubkov et al. have also considered various evaporation rates
to deduce that evaporation increases osmolarity, and they computed results for only 5 s, which explains
the larger values of osmolarity we obtain as shown in Fig. 9b.

4.3 Variable permeability

In this section, we present simulated results by specifying the variable permeability Pc(x, y) as defined
in Equation (2.3). Figure 10 shows time sequences of the contours for both tear film thickness (left
column) and osmolarity distribution (right column). Most of the dynamics of tear film thickness are
similar to previous cases, such as the development of the black line and the continuously thinning in the
interior as a result of evaporation. However, due to the variable permeability of the ocular surface, we
observe different patterns of tear film thickness over the conjunctival region and the corneal region in
the left column of Fig. 10. Since the cornea is less permeable, we see in the thickness plots that the tear
film is thinner in the corneal region; it appears as a darker (blue) island in the centre of the eye-shaped
domain.

For the osmolarity distribution shown in the right column of Fig. 10, several new patterns are
observed beyond the elevated osmolarity in the black line region and the increasing of osmolarity due
to evaporation. Because the cornea is less permeable than the conjunctiva, less osmotic flow is expected
through the cornea, and this expectation is clearly captured by the model. In the osmolarity contours in
Fig. 10, we can clearly see a brighter disc in the region of cornea indicating higher osmolarity there.
Combining the effect of surface tension and evaporation, the osmolarity is even larger in the black line
region over the cornea, and the global maximum of osmolarity is attained there. Comparing with the
constant permeability case, both min(h) and max(c) are slightly changed since, in the variable perme-
ability case, we have a more permeable conjunctiva.

In order to better observe the transition from conjunctiva to cornea, we plot the horizontal cross-
sectional plots (through the line y = 0.3 which is roughly across the geometric centre of the cornea
(GCC)) in Fig. 11. Because of the punctal drainage and lacrimal gland supply specified by the time-
dependent fluid flux boundary condition (2.5), the tear film thickness is much smaller for x < 0 in
Fig. 11a. A local minimum of the tear film thickness, or black line, is still observed in the canthus regions
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Fig. 10. Contours of tear film thickness (left column) and osmolarity (right column) with variable permeability (2.3) and Dirichlet
boundary condition (2.6). The thinning rate is 4 µm/min.

due to the curvature of the menisci. The abrupt change of permeability from conjunctiva to cornea is
reflected by the tear film thickness. In Fig. 11a, we see a rapid drop of tear film thickness around x = ±1
near the boundary of the cornea. The transition of permeability influences the osmolarity distribution
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Fig. 11. Cross-sectional plots through the horizontal line y = 0.3 with variable permeability (2.3) and Dirichlet boundary condi-
tion (2.6). Thinning rate is 4 µm/min and the temporal canthus is located at the positive side of the x-axis. (a) Tear film thickness.
(b) Osmolarity.

Fig. 12. The contribution of diffusion to osmolarity dynamics. Diffusion is larger (magnitude > 10−2) in the lighter areas.

even more dramatically. After t = 10, the osmolarity in the cornea surpasses the osmolarity in the nasal
canthus (the location of global peak of osmolarity for the zero and constant permeability cases).

4.3.1 Diffusion Diffusion also plays a role in the osmolarity dynamics. In Figure 12, we plot the
diffusive term, −[∇ · (h∇c)]/(hPec), in the c equation over the eye-shaped geometry to investigate
its influence on the whole model system. From Fig. 12, we see that the diffusion is non-negligible
(indicated by the lighter colours and the magnitude is > 10−2) inside the black line regions; diffusion is
actually of the same size as advection in the black line regions at t = 20. Our direct plots of the diffusion
term on the eye-shaped domain confirmed the results on the 1D domain of Zubkov et al. (2012), who
studied diffusion by comparing computed results for models with and without diffusivity. Even though
the Pèclet number is large in the model system, diffusion helps to ameliorate the high osmolarity level
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Fig. 13. Fluid flux (Q) over contours of its magnitude with variable permeability and thinning rate 4 µm/min. (Far fewer arrows
than the computational grid points are shown for clarity. All the arrows in this plot start at different locations.)

in the black line regions. Diffusion could affect the osmolarity distribution similarly in local spots of
break-up (Peng et al., 2014).

4.3.2 Movement of fluid and solutes Figure 13 shows the quiver plots of the fluid flux Q at time
t = 1 and t = 20. The normalized arrows in the plots show the directions only, and we use the shading to
indicate the magnitude of the flux vector: the darker the background, the smaller is the flux. In particular,
white indicates a flux > 10−2; dark grey is < 10−3. At t = 1, the formation of the black line dominates
the movement of tear fluid. We see from the first plot of Fig. 13 that relatively fast flow (‖Q‖ � 10−2)
is observed near the menisci, and all the arrows pointing towards the eye lids. This is because the lower
pressure created by the menisci attracts the nearby fluid forming a locally thin region. This thin region
is referred to as the black line and corresponds to the dark blue band as we pointed out in the thickness
contour plots previously. In the second plots of Fig. 13, relatively fast fluid motion (‖Q‖ � 10−2) still
occurs in the menisci; however, the arrows in the menisci show that the flow splits near the lacrimal
gland and moves towards the nasal canthus along the eye lids. This hydraulic connectivity is thought to
be caused by the pressure difference created by the time-dependent influx and efflux on the boundary.
The pressure gradient in the menisci drives the fluid flows towards the nasal side.

Li et al. (2014) have studied tear flow over the eye-shaped geometry specifying the same time-
dependent flux BC (2.5). They discovered that, after the development of the black line, relatively fast
fluid flow occurs in the menisci corresponding to the experimentally observed hydraulic connectivity,
while, on the inner side of the black line region, fluid flow is small. The model in this paper couples the
fluid dynamics in the tear film with the osmolarity and still captures hydraulic connectivity.

The model Equations (2.1) and (2.2) can be combined into a single PDE (Peng et al., 2014):

∂t(ch) + ∇ ·
(

cQ − h

Pec
∇c

)
= 0. (4.1)
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COMPUTED TEAR FILM AND OSMOLARITY DYNAMICS ON AN EYE-SHAPED DOMAIN

Fig. 14. Contour for c(x, y, t)h(x, y, t) − c(x, y, 0)h(x, y, 0) with variable permeability and thinning rate 4 µm/min.

Here ch represents the mass per unit area of the solute. From this equation, we see that the solute would
move with fluid flow, ∇ · (cQ), and would diffuse from a higher concentration to lower concentration
∇ · (−h∇c)/Pec. However, since we have a very large Péclet number for the osmolarity, we expect the
solute to move primarily with the fluid flow. Figure 14 shows the contours of the change of the mass
per area as opposed to its initial condition: c(x, y, t)h(x, y, t) − c(x, y, 0)h(x, y, 0). The left plot of Fig. 14
shows the redistribution of the solute at t = 1. We see a decrease of mass in the black line region and
increase of mass in the menisci corresponding to the formation of the black line; it matches with fluid
movement as shown in Fig. 13. At t = 20, the redistribution of mass (right plot of Fig. 14) also matches
the fluid motion; the increase of solute mass corresponds to the influx from the lacrimal gland, and
subsequent flow around the meniscus. The decreases can be explained by the drainage that occurred at
the puncta. Another interesting point we note from Fig. 14 is that variable permeability does not have an
effect on ch, because Equation (4.1) does not depend on permeability at all. In general, solutes in the tear
fluid move mostly with the fluid flow. Throughout the time considered, the change of c(x, y, t)h(x, y, t)
is rather small in the interior, and thus the reciprocal relation between c and h generally holds in the
interior eye.

4.4 Increased evaporation rate

The average thinning rate for the pre-corneal tear film (PCTF) measured by Nichols et al. (2005) is
3.79 ± 4.20 µm/min, with the fastest observed PCTF thinning rate being 20 µ/min. We attempt to inves-
tigate how evaporation influences tear film and osmolarity dynamics by adjusting the parameters that
correspond to an increased thinning rate of 20 µm/min.

Figure 15 shows the contours of both h(x, y, t) and c(x, y, t) with parameters specified such that the
thinning rate for a flat film is 20 µm/min and with variable permeability. Compared with the previous
results for the normal thinning rate (4 µm/min), we observe the following effects deduced by elevated
evaporation. In the thickness contour plots, we observe that the black line forms more rapidly, the
interior tear film thickness decreases faster to a thinner level, the global minimum is smaller and the
transition from conjunctiva to cornea is more obvious. The associated osmolarity contours indicate that
the osmolarity is more elevated with a larger global maximum value than the previous 4 µm/min case.
Moreover, the osmolarity difference between cornea and conjunctiva is more pronounced. In addition,
we can see that the tear film thins faster with higher evaporation by comparing the extreme values listed
in Table 3. We deduce that evaporation increases osmolarity, confirming the 1D results of Zubkov et al.
(2012).

The horizontal cross-sectional plots shown in Fig. 16 give another view of the tear film thickness
and osmolarity, as well as their correlation. Clearly, the tear film becomes much thinner and osmolarity
is much more elevated, especially over the corneal region (roughly −1 � x � 1) than with the normal
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Fig. 15. Contours of tear film thickness (left column) and osmolarity (right column) with variable permeability (2.3) and Dirichlet
boundary condition (2.6). The thinning rate is 20 µm/min.
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Fig. 16. Cross-sectional plots through the horizontal line y = 0.3 with variable permeability (2.3) and Dirichlet boundary condi-
tion (2.6). Thinning rate is 20 µm/min and the temporal canthus locates at the positive side of the x-axis. (a) Tear film thickness.
(b) Osmolarity.

thinning rate (4 µm/min) case (Fig. 11). The jump from cornea to conjunctiva is more obvious in both
h and c. Higher osmolarity induces a larger osmotic flux from the ocular surface. Even though the
thinning rate is five times larger, the change in the film thickness and osmolarity are less than a factor
of five different from those in Fig. 11 and Table 3.

4.5 Osmotic flux

A healthy eye is able to maintain a balance between tear loss and supply in a blink cycle. In our
model system, we impose time-dependent tear fluid supply and drainage on the boundary that are
balanced over a flux cycle (Δtbc = 10). Over the ocular surface, water leaves the system by evapo-
ration and is supplied by osmotic flux. We now study how the osmotic flux responds to evaporation,
and if, at some point, the evaporative loss and osmotic flux reach a dynamic equilibrium over the
entire eye.
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Fig. 17. Competition between evaporative loss and osmotic flux (volume/time). (a) Thinning rate is 20 µm/min. (b) Thinning rate
is 38 µm/min.

To evaluate the volumetric flux of evaporation and osmosis, we integrate the PDE (2.1) over the
eye-shaped domain Ω and find:

volumetric flux of evaporation: Fe(t) =
∫∫

Ω

EJ dA,

volumetric flux of osmosis: Fo(t) =
∫∫

Ω

Pc(c − 1) dA.

We plot Fe(t) and Fo(t) together in Fig. 17 to investigate the competition between evaporation and osmo-
sis over the eye-shaped domain. Both plots in Fig. 17 are simulation results with variable permeability,
but with different thinning rates. Note that 38 µm/min is the thinning rate of the bare water interface
(Peng et al., 2014). As is seen in the plots, osmotic flux is induced immediately in the simulations. The
osmotic flux increases much faster with the higher thinning rate (38 µm/min), and is seen to reach an
equilibrium after t = 15. The volumetric flux of evaporation stays almost constant for the 20 µm/min
case, while a slight decrease is observed for the 38 µm/min case. Faster evaporation makes the tear film
thin faster, and reach the equilibrium thickness at more locations on the eye. The presence of van der
Waals forces prevents the tear film from completely dewetting the ocular surface, and evaporation is
shut off when and where a very thin equilibrium h is reached. This results in a decrease of volumetric
flux of evaporation over the entire eye. We believe that ultimately the evaporation and osmosis would
balance each other and the system would achieve a dynamic equilibrium. However, we cannot verify
this because the pressure gradient inside the tear film, between the meniscus and the interior, becomes
too steep for our current numerical methods to accurately resolve after t = 25. Similar issues limited the
amount of time that could be computed in previous models as well (Maki et al., 2010a,b; Li et al., 2014).
We also doubt that the equilibrium between evaporation and osmosis can be observed in experiments
because, before the equilibrium is reached, reflex tearing and/or blinks are more likely induced when
the osmolarity level is high enough.

4.6 Neumann boundary condition for the osmolarity

We also consider the homogeneous Neumann boundary condition (2.7) for our system. It specifies
no flux for osmolarity on the boundary; that is, solute cannot pass through the boundary. The com-
puted results with this Neumann boundary condition (2.7) is rather similar to previous results using the
Dirichlet boundary condition (2.6). This is because there is a large amount of fluid in the menisci and the
fluid interaction between the menisci and interior is small due to the presence of the black line separating
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Table 4 Conservation of mass with boundary conditions (4.3) and (2.7).

Time ΔM (t) Percentage of M (0) (%)

5 0.0345 0.2452
10 0.0542 0.3756
15 0.0689 0.4774
20 0.0812 0.5625
30 0.1012 0.7015

them. Our numerical simulations using the Neumann boundary condition (2.7) also confirm that there is
negligible difference from the results of using the Dirichlet boundary condition (2.6). Therefore, we do
not include the results of the Neumann condition in this paper. However, results of the Neumann bound-
ary condition are used to check the conservation of solute mass in our model system as an indication of
numerical accuracy.

We now turn to checking conservation of solute over the domain. Integration of Equation (4.1) over
the domain Ω gives the rate of change of the overall solute mass:

∂tM (t) +
∫∫

Ω

∇ ·
(

cQ − h

Pec
∇c

)
dA = 0.

Using the divergence theorem, we obtain

∂tM (t) +
∮

∂Ω

(
cQ − h

Pec
∇c

)
· nb dS = 0, (4.2)

where M (t) = ∫∫
Ω

ch dA is the total mass of solute over the eye at time t. If we specify the zero flux
boundary condition for the fluid,

Q · nb|∂Ω = 0 (4.3)

and homogeneous Neumann boundary condition (2.7) for the osmolarity, then we conclude from
Equation (4.2) that

M (t) = M (0),

that is, the amount of solute mass is conserved over time. If our numerical simulation is reliable, the
difference of mass defined as ΔM (t) = |M (t) − M (0)|, where M (t) is computed numerically, should
remain small throughout the simulation, and the magnitude of ΔM (t) can be regarded as an indication
of the performance of the underlying numerical method as described in Section 3.

Table 4 lists both the absolute and relative changes of solute mass at various times for the computa-
tion with zero fluid flux BC and homogeneous Neumann BC for the osmolarity. The mass is not exactly
conserved because numerical errors are introduced at every time step, and they are accumulated slowly
with time. From Table 4, we see that ΔM (t) increases with time; however, the growth is not exponen-
tial, which can be regarded as a numerical evidence that the method is stable. Moreover, the numerical
method we use is able to keep ΔM (t) very small throughout the computation; the relative change of
mass is below 1%.
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5. Conclusion

The mathematical model in this paper combines tear film flow, evaporation, osmolarity and osmosis on
an eye-shaped domain representing the exposed ocular surface. To our knowledge, this is the first such
model that includes the osmolarity in a 2D tear film model. The results give information that we believe
is not available from human subjects or animal models of the tear film. We believe that these results
help give context to osmolarity measurements in vivo (e.g. Benelli et al., 2010; Lemp et al., 2011). The
results show that the location and value of the minimum tear film thickness and maximum osmolarity
are found to be sensitive to the permeability at the tear/eye interface.

Measurements of tear film osmolarity in human subjects are made from the inferior meniscus, or
more commonly, near the temporal canthus. These measurements have been calibrated with respect to
DES so that diagnosis of DES is possible with better single-measurement specificity and sensitivity
than other single signs or symptoms of DES (Gilbard et al., 1978; Lemp et al., 2011; Sullivan, 2014).
When used for those purposes, the meniscal osmolarity measurement accomplishes its aim, but occa-
sionally some investigators will try to infer osmolarity values in other parts of the tear film. But are
those meniscus or canthus measurements informative about what is going on in the dynamics of the
rest of the tear film? The values in the interior are quite different from those in the meniscus near the
temporal canthus according to our model. For low evaporation rates of 1 micron/min or less, our results
are similar to those of Zubkov et al. (2012), with modest increases of osmolarity away from meniscus
and particularly in the black line. For larger evaporation rates and longer interblink times, such as those
that may be encountered in clinical experiments, our results indicate higher osmolarities. With variable
permeability as suggested by experimental measurement (King-Smith et al., 2010b), we find that, for
4 µm/min thinning rates, the peak value of the osmolarity increases to 51% over the isotonic value, or
about 457 Osm/m3. This is just at the edge of sensory detection according to the results of Liu et al.
(2009), assuming that there is no neuropathy present that would reduce sensory perception at the ocu-
lar surface. For 10 and 20 µm/min thinning rates (Nichols et al., 2005; King-Smith et al., 2010a), we
obtain maximum values of 951 and 1828 Osm/m3, respectively; these values are quite high compared
with what is mentioned for meniscus measurements reported in the literature, and would certainly be
felt by subjects with normal neural function (Liu et al., 2009). For all of these cases, the maximum
occurs in the black line over the cornea. For the current model, there is very little change in the osmo-
larity in the outer canthus, which would make it difficult to use that location to deduce the different
maxima in the osmolarity. The variability in the osmolarity in the meniscus as measured clinically is
likely due to mixing of the tear film due to blinking (Lemp et al., 2011; Sullivan, 2014), which is not
included in the present model.

There are some additional limitations to the current study for linking the osmolarity measured in
vivo with the computed results. (i) As previously mentioned, there is no lid motion to mix the tear
fluid as occurs in vivo, which contributes to the variability observed in vivo. (ii) Once the black line is
formed in the computed results, there is little exchange between the tear film in the interior with the
meniscus. The supply and drainage of tear fluid occurs in and affects primarily the meniscus, and this
tends to hold the meniscal values of the osmolarity close to the isotonic value. (iii) The volume of tear
fluid is probably large compared with that of DES subjects, and could affect the values of osmolarity
obtained. (iv) The model does not include break-up per se, and there have been results that suggest
that the osmolarity could be quite high in these localized regions (e.g. Liu et al., 2009; Braun et al.,
2010; King-Smith et al., 2010b; Braun, 2012; Peng et al., 2014). These points suggest possible fruitful
directions for future research. Additional directions would include a dynamic lipid layer that affects the
evaporation rate in a sensible way on the eye-shaped domain; possible models are those of Bruna &
Breward (2014) and Peng et al. (2014).
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Note Added in Press

During publication of this paper, a reference for the permeabilities appeared: Braun, R. J., King-Smith,
P. E., Begley, C. G., Li, Longfei and Gewecke, N. R. (2015) Dynamics and function of the tear film in
relation to the blink cycle. Prog. Ret. Eye Res. 45, 132–164.
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Appendix A. Model derivation

We show detailed derivation of the model system (2.1) and (2.2) below. Inside the tear fluid, we
model the tear film fluid with the incompressible Navier–Stokes equations and energy conserva-
tion equation, and model the osmolarity dynamics with a convection–diffusion equation. Namely, in
0 < z′ < h′(x′, y′, t′):

ρ(∂t′u′ + u′ · ∇u′) = −∇p′ + μΔu′ − ρgj, ρcp(∂t′T
′ + u′ · ∇T ′) = kΔT ′,

∇ · u′ = 0, ∂tc
′ + ∇ · (c′u′) = DcΔc′.

Here c′ is the volumetric concentration of osmotically active physiological salts in the aqueous layer. It
is measured in units of Osmoles per m3. By Dc, we denote the diffusion coefficient of osmolarity; and
(i, j, k) are the standard basis vectors in the (x′, y′, z′)-directions, respectively.

At the free surface, z′ = h′, we have the equations to balance fluid mass and energy:

J ′ = ρ(u′ − u′
I) · n′, LmJ ′ + kn′ · ∇T ′ = 0.

Here u′
I = ∂ ′

t h
′k is the interfacial velocity and n′ is the normal vector to the tear film surface. The jump

of the velocity at the free surface is due to evaporation. We also assume tangential immobility and we
balance normal stress with the conjoining pressure under consideration:

u′ · t′1 = u′ · t′2 = 0, −p′
v − n′ · T′ · n′ = σ∇ · n′ − Π ′.

Here t′1 and t′2 are a pair of orthogonal tangential vectors of the tear film surface, T′ = −p′I + μ(∇u′ +
∇u′T ) is the Newtonian stress tensor, and Π ′ = A∗/h′3 is the conjoining pressure.

Finally, we relate the interfacial temperature to the mass flux and pressure jump by the non-
equilibrium condition, and we impose a no-flux condition for the osmolarity,

KJ ′ = α(p′ − p′
v) + T ′ − T ′

s, (u′ − u′
I)c

′ · n′ = Dc∇c′ · n′.

Since we model the evaporative mass flux J ′ as

J ′ = ρ(u′ − u′
I) · n′,

the no-flux condition for osmolarity at the free surface becomes

Dc∇c′ · n′ = c′J ′

ρ
.

At the cornea–tear film interface, z′ = 0′, in addition to the specification of no-slip conditions and
the prescription of body temperature, we allow water to go through the ocular surface by osmosis, but
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keep the physiological salt from penetrating the ocular surface; thus we have

u′ = v′ = 0, T ′ = T ′
B, w′ = P′

c(c
′ − c′

0), w′c′ = Dc∂
′
zc

′.

Here c′
0 = 302 Osm/m3 is the isotonic physiological salt concentration, which is also used to scale c′.

The following scales are used to non-dimensionalize the equations:

x′ = L′x, y′ = L′y, z′ = d ′z, h′ = d ′h, c′ = c′
0c̄, u′ = U0u, v′ = U0v, t′ = L′

U0
t,

w′ = d ′U0

L′ w, p′ = μU0

L′ε2
p, T = T ′ − T ′

s

T ′
B − T ′

s

, J ′ = k

d ′Lm
(T ′

B − T ′
s)J .

Here ε = d ′/L′ 	 1 indicates the separation of length scales. After non-dimensionalization, we have, in
0 < z < h(x, y, t),

ε2 Re(∂tu + u∂xu + v∂yu + w∂zu) = −∂xp + (ε2∂2
x u + ε2∂2

y u + ∂2
z u),

ε2 Re(∂tv + u∂xv + v∂yv + w∂zv) = −∂yp + (ε2∂2
x v + ε2∂2

y v + ∂2
z v) − G,

ε4 Re(∂tw + u∂xw + v∂yw + w∂zw) = −∂zp + ε2(ε2∂2
x w + ε2∂2

y w + ∂2
z w),

ε2 Re Pr(∂tT + u∂xT + v∂yT + w∂zT) = ε2(∂2
x T + ∂2

y T) + ∂2
z T ,

∂xu + ∂yv + ∂zw = 0,

ε2 Pec[∂t c̄ + (u∂xc̄ + v∂yc̄ + w∂zc̄)] = ε2∂2
x c̄ + ε2∂2

y c̄ + ∂2
z c̄,

at z = h(x, y, t),

EJ = −u∂xh − v∂yh + w − ∂th√
1 + ε2(∂xh)2 + ε2(∂yh)2

,

J + −ε2∂xh∂xT − ε2∂yh∂yT + ∂zT√
1 + ε2(∂xh)2 + ε2(∂yh)2

= 0,

v + ε2w∂yh√
1 + ε2(∂yh)2

= u + ε2w∂xh√
1 + ε2(∂xh)2

= 0,

p − pv − 2ε2[ε2(∂2
x h∂xu + ∂2

y h∂yv + ∂xh∂yh(∂yu + ∂xv) − ∂xh∂xw − ∂yh∂yw) + ∂zw − ∂xh∂zu − ∂yh∂zv]√
1 + ε2(∂xh)2 + ε2(∂yh)2

= −S

[
∂x

(
∂xh√

1 + ε2(∂xh)2 + ε2(∂yh)2

)
+ ∂y

(
∂yh√

1 + ε2(∂xh)2 + ε2(∂yh)2

)]
− A

h3
,

K̄J = δ (p − pv) + T ,

−ε2∂xh∂xc̄ − ε2∂yh∂yc̄ + ∂zc̄ = E Pecε
2c̄J
√

1 + ε2(∂xh)2 + ε2(∂yh)2,
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at z = 0,

u = v = 0, T = 1,

w = Pc(c̄ − 1),

ε2 Pecwc̄ = ∂zc̄.

We see that Pec = U0L′/Dc is the Pèclet number for salt and Pc = Ptissvwc′
0/εU0 is the non-dimensional

permeability of the ocular surface. The tissue permeability Ptiss will take on different values as described
in Section 2.2.

We estimate the size of the non-dimensional parameters:

ε = d ′

L′ = 1 × 10−3, Re = U0L′

μ/ρ
≈ 19.23, Pr = cpμ

k
≈ 8.01,

where Re is the Reynolds number and Pr is the Prandtl number. Terms involving the following parame-
ters are regarded as small:

ε2 = 1 × 10−6, ε2 Re ≈ 1.92 × 10−5, ε2 Re Pr ≈ 1.54 × 10−4.

Applying lubrication theory by neglecting all the small terms for the fluid equations, we then have the
following leading-order approximations.

In 0 < z < h(x, y, t):

0 = −∂xp + ∂2
z u, (A.1)

0 = −∂yp + ∂2
z v − G, (A.2)

0 = −∂zp, (A.3)

0 = ∂2
z T , (A.4)

∂xu + ∂yv + ∂zw = 0. (A.5)

For the osmolarity, we expand c̄(x, y, z, t) as

c̄ = c̄0 + ε2c̄1 + O(ε4).

So the leading-order equation is
∂zc̄0 = 0, (A.6)

which implies c̄0 is independent of z, i.e. c̄0 = c̄0(x, y, t). We proceed to the next order so as to find
an equation for c̄0, and we obtain

∂2
z c̄1 = Pec[∂t c̄0 + (u∂xc̄0 + v∂yc̄0)] − ∂2

x c̄0 − ∂2
y c̄0. (A.7)

At z = h(x, y, t):

EJ = −u∂xh − v∂yh + w − ∂th, (A.8)

J + ∂zT = 0, (A.9)
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u = v = 0, (A.10)

p − pv = −S(∂2
x h + ∂2

y h) − A

h3
, (A.11)

K̄J = δ(p − pv) + T , (A.12)

∂zc̄1 = EPecc̄0J + ∇h · ∇ c̄0. (A.13)

We use ∇ = (∂x, ∂y) and Δ = (∂2
x + ∂2

y ) to represent the differential operators applied on them for
convenience since both h and c̄0 are independent on z.

At z = 0:

u = v = 0, T = 1, (A.14)

w = Pc(c̄0 − 1), (A.15)

∂zc̄1 = PecPc(c̄0 − 1)c̄0. (A.16)

For the tear film, we solve for the velocity and temperature fields, integrate the mass conservation
equation and use the kinematic condition to derive a PDE for h(x, y, t):

∂th + EJ + ∇ · Q − Pc(c̄0 − 1) = 0,

with

J = 1 − δ(SΔh + Ah−3)

K̄ + h
and Q =

(∫ h

0
u dz,

∫ h

0
v dz

)
= h3

12
∇(SΔh + Ah−3 − Gy).

For the osmolarity, we integrate Equation (A.7) with respect to z from 0 to h. Noting that c̄0 =
c̄0(x, y, t), we then have

∂zc̄1(x, y, h, t) − ∂zc̄1(x, y, 0, t) = Pec[h∂t c̄0 + ∇ c̄0 · Q] − hΔc̄0.

According to the boundary conditions (A.13) and (A.16), we derive a PDE for c̄0(x, y, t):

Pec[h∂t c̄0 + ∇ c̄0 · Q] − hΔc̄0 = E Pecc̄0J + ∇h · ∇ c̄0 − PecPc(c̄0 − 1)c̄0.

For convenience, we use c in the equations instead of c̄0. Therefore, we have derived the governing
Equations (2.1) and (2.2):

∂th + EJ + ∇ · Q − Pc(c − 1) = 0,

h∂tc + ∇c · Q = EcJ + 1

Pec
∇ · (h∇c) − Pc(c − 1)c.

Appendix B. Time-dependent fluid flux boundary condition

We define

Qlg(s, t) = flg(t)Q̂ls(s), Qp(s, t) = fp(t)Q̂p(s)
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in the time-dependent fluid flux BC (2.5). The formulations of flg(t), fp(t), Q̂lg(s) and Q̂p(s) are listed
below:

flg(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
cos

(
π

2

t − tlg,on

Δtlg
− π

2

)
+ 1

]
if |t − tlg,on| � Δtlg;

1 if tlg,on + Δtlg � t � tlg,off − Δtlg;

1

2

[
cos

(
π

2

t − tlg,off

Δtlg
+ π

2

)
+ 1

]
if |t − tlg,off| � Δtlg;

0 otherwise.

(B.1)

fp(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[
cos

(
π

2

t − tp,on

Δtp
− π

2

)
+ 1

]
if |t − tp,on| � Δtp;

1 if tp,on + Δtp � t � tp,off − Δtp;

1

2

[
cos

(
π

2

t − tp,off

Δtp
+ π

2

)
+ 1

]
if |t − tp,off| � Δtp;

0 otherwise.

(B.2)

Q̂lg(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < slg,on − Δslg;

−1

2
Q̂0lg

[
cos

(
π

2

s − slg,on

Δslg
− π

2

)
+ 1

]
if |s − slg,on| � Δslg;

−Q̂0lg if slg,on + Δslg � s � slg,off − Δslg;

−1

2
Q̂0lg

[
cos

(
π

2

s − slg,off

Δslg
+ π

2

)
+ 1

]
if |s − slg,off| � Δslg;

0 otherwise.

(B.3)

Q̂p(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s < sp,lo − Δsp;

− Q̂0p

2
(1 − pout)

[
cos

(
π

s − sp,lo

Δsp
− π

)
− 1

]
if |s − sp,lo| � Δsp;

0 if sp,lo + Δsp � s � sp,up − Δsp;

− Q̂0p

2
(pout)

[
cos

(
π

s − sp,up

Δsp
− π

)
− 1

]
if |s − sp,up| � Δsp;

0 otherwise.

(B.4)

Parameters in the formulations are tabulated in Table B.1.
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Table B.1 Parameters appearing in the flux boundary condition.

Parameter Description Value

tlg,on On time for lacrimal gland supply 0.2

tlg,off Off time for lacrimal gland supply 5.2

Δtlg Transition time of lacrimal gland supply 0.2

tp,on On time for punctal drainage 1.05

tp,off Off time for punctal drainage 5.05

Δtp Transition time of punctal drainage 0.05

QmT Estimated steady supply from lacrimal gland 0.08

Q̂0lg Height of lacrimal gland peak 0.4

Q̂0p Height of punctal drainage peak 4

Δtbc Flux cycle time 10

slg,on On-ramp location for lacrimal gland peak 4.2

slg,off Off-ramp location for lacrimal gland peak 4.6

Δslg On-ramp and off-ramp width of lacrimal peak 0.2

pout Fraction of drainage from upper punctum 0.5

sp,lo Lower punctal drainage peak location 11.16

sp,up Upper punctal drainage peak location 11.76

Δsp Punctal drainage peak width 0.05

157

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article-abstract/33/2/123/2875345 by U
niversity of D

elaw
are Library user on 07 June 2019


	Introduction
	Formulation
	Parameter descriptions
	Permeability of the ocular surface
	Boundary conditions
	Initial condition

	Numerical methods
	Computational grid
	A hybrid time-stepping scheme

	Results
	Constant non-zero permeability
	Zero permeability
	Variable permeability
	Diffusion
	Movement of fluid and solutes

	Increased evaporation rate
	Osmotic flux
	Neumann boundary condition for the osmolarity

	Conclusion



