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Abstract During the upstroke of a normal eye blink, the upper lidmoves and paints a thin tear film over the exposed
corneal and conjunctival surfaces. This thin tear filmmay be modeled by a nonlinear fourth-order PDE derived from
lubrication theory. A challenge in the numerical simulation of this model is to include both the geometry of the eye
and the movement of the eyelid. A pair of orthogonal and conformal maps transform a square into an approximate
representation of the exposed ocular surface of a human eye. A spectral collocation method on the square produces
relatively efficient solutions on the eye-shaped domain via these maps. The method is demonstrated on linear and
nonlinear second-order diffusion equations and shown to have excellent accuracy as measured pointwise or by
conservation checks. Future work will use the method for thin-film equations on the same type of domain.

Keywords Blinking · Conformal mapping · Spectral method

1 Introduction

The ocular tear film is critical for good vision and eye health. In health, the tear film protects the ocular surface
with moisture, helps transport waste away from the ocular surface, and provides a smooth optical surface for visual
function [1]. The tear film has multiple layers [2–6], but the thickest layer is composed primarily of water [7]. The
pre-corneal tear film is the tear film located directly on the cornea, and that is what we refer to when we say tear
film here.

The tear film is a total of a fewmicrons thick in the center of the cornea after a blink [8–10] and has a considerably
thicker meniscus (about 0.065 mm or more) around the lid margins [11–14], where the tear film climbs the wettable
part of the eyelids. A relatively smooth and uniform filmmust be re-formed rapidly after each blink to enable vision
with minimal interruption. Mathematical models have attempted to capture the dynamics of the tear film at various
levels; recent reviews have appeared summarizing many efforts [15,16]. The term “blink cycle” is used to mean the
combined periods of a single blink, in which the superior lid moves down toward the inferior lid and then returns
to its original position, together with the interblink period separating two blinks. Using one-dimensional models, a
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few papers have solved models for blink cycles [17–21], while others have solved for the combined opening and
interblink phases [22–27].

The shape of the palpebral fissure (open eye shape) has also been incorporated into mathematical models of tear
film dynamics [28,29]. In these models, a piecewise polynomial boundary was created that was fit to a digital image
of an open eye. Besides specifying the tear film thickness at the boundary; they specified either the pressure [28] or
the flux [29] of the aqueous fluid. Their simulations recovered features seen in previous 1D models and captured
some experimental observations of the tear film dynamics around the lid margins. In [29], the in vivo lacrimal supply
and drainage mechanisms were simplified, and they imposed a time-independent flux boundary condition; under
some conditions, they recovered flow around the outer canthus as seen experimentally. The models were extended
to include important effects such as evaporation [30] and osmolarity transport [31].

To our knowledge, no models for a 2D blinking eye shape have been published. There have been computational
models for thin films on general surfaces that are time independent [32,33], as well as analytical lubrication
models on curved surfaces [34,35]. Ultimately, we are interested in a blinking eye shape domain to study tear film
dynamics, and so we focus here on the time-dependent domain; there appears to be far less work done regarding
moving domains. In this work, we introduce a model eye-shaped domain that blinks. The upper and lower lids are
arcs of circles and meet at a finite angle representing the canthi of the eye. This domain approximates the palpebral
fissure, but it has mathematical advantages over a closer approximation to the eye opening. The eye-shaped domain
can be conformally mapped to an infinite strip such that by making the upper side of the strip move vertically, the
top edge of the eye shape can be made to move like the upper eyelid during a blink. Furthermore, the infinite strip
can be mapped to a square with edges at the fixed locations x = ±1 and y = ±1; this domain is convenient for
applying Chebyshev spectral discretization of the spatial coordinates. In our models, we solve the problems in this
convenient computational domain and map the solution back to the eye-shaped domain for graphical representation
of the results.

As a first step, we solve model problems that are of second order in the spatial derivatives on this moving model
eye domain. We solve the (linear) heat equation, a version of a porous medium equation, and a nonlinear diffusion
equation which mimics aspects of the thin fluid film equations. Nonlinear diffusion models in general, and porous
medium equations in particular, have been of considerable interest (e.g., [36–38]). We study only a small set of the
possibilities here as proof of concept for use in nonlinear problems on this kind of moving domain. The nonlinear
models may have terms that have both positive and negative exponents, which imitates some aspects of the tear film
models where the tear film is assumed to wet its substrate (the cornea in the case of [39]). We do not attempt to
capture some aspects of possible solutions to the porous medium equations such as compact support [38] or waiting
times [36].

We first state the test problems of interest in Sect. 2. We then set up the domain mappings to transform from the
blinking eye shape to a fixed square computational domain (and back) in Sect. 3. The computational approach is
discussed in Sect. 4 and results are given in Sect. 5. Finally, we discuss the results and future directions in Sect. 6.

2 Model problems

We describe a solution method for the problem

ht + ∇ ·q(h, hx , hy) = 0, (x, y) ∈ E(t), (1)

where h(t, x, y) is a dependent variable, meant to stand for the thickness of fluid, and q is a known, smooth flux
function. The domain E(t), shown in Fig. 1, is an idealized eye shape whose top boundary moves in a prescribed
fashion to be explained in Sect. 3.

2.1 Linear diffusion

The case q = −κ∇h for constant κ results in the heat equation. It is of interest as the most basic second-order
problem and because it has an explicit free-space solution that we can exploit to check the accuracy of our numerical
method. Define the heat kernel
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Simulation of parabolic flow on an eye-shaped 113

Fig. 1 Plot of the three domains used in this paper. The physical domain E(t) is meant to approximate the surface of the human eye,
with an upper lid that moves in prescribed fashion. This region is mapped conformally using complex variables to an infinite stripR(t)
top edge of which moves up and down as the eyelid moves in E(t). Finally, a time-varying map pulls the strip back to a fixed square C,
where a Chebyshev spectral method is applied for computations

K (t, x, y) = 1

4π t
exp

(
− x2 + y2

4κt

)
. (2)

Let t0 > 0 and (x0, y0) ∈ E(0). If we use the initial condition h(0, x, y) = K (t0, x − x0, y − y0) and the Dirichlet
condition

h(t, x, y) = K (t + t0, x − x0, y − y0), (x, y) ∈ ∂E(t), (3)

then Eq. (2) is a solution throughout the domain for all t . This situation simulates the response to a point source at
(x0, y0) introduced at time −t0.

2.2 Nonlinear diffusion

The nonlinear case q = −ψ(h)∇h can be made somewhat like the thin-film equation. For example, if ψ(h) =
κ(h3 + βh−3), then the PDE resembles the case of a thin fluid film subject to van der Waals forces; this situation
was studied in Winter et al. [39] and many other places (e.g., [40]).

Since exact solutions to this nonlinear problem are unknown to us, we use mass conservation as a check on the
accuracy of our numerical solutions. We create no-flux boundary conditions that keep the total mass of the solution
fixed, and use deviation from that quantity as a proxy for the error in the solution. For any flux function q, suppose
that

n ·q − (v · n)h = 0 on ∂E(t), (4)

where n is the unit outward normal and v is the velocity of a point on the boundary. By the Reynolds Transport
Theorem [41] for the PDE (1), this condition ensures conservation of the total “mass” (in the fluid context, volume)

M(t) =
∫

E(t)

h(x, y) dA. (5)

If a boundary point is stationary, then (4) is just a homogeneous Neumann condition. Equation (4) can be generalized
to prescribe any flux that varies in time and along the boundary.
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3 Domain and coordinate mappings

The PDE domain E(t) is determined by a pair of two-dimensional coordinate changes, as shown in Fig. 1. Let
z = x + iy be the complex form of the coordinates in E(t), and let z̃ = x̃ + i ỹ be another complex coordinate.
Define the infinte stripR(t) by

R(t) = {x̃ + i ỹ ∈ C : −1 < ỹ < λ(t)}, (6)

where −1 < λ(t) ≤ 1 is a prescribed function satisfying λ(0) = 1 (which will correspond to a fully open eye).
Then E(t) is the image of R(t) under the conformal map

z = f (z̃) = tanh

(
z̃

2

)
, (7)

or equivalently,

x(x̃, ỹ) = sinh(x̃)

cos(ỹ) + cosh(x̃)
, y(x̃, ỹ) = sin(ỹ)

cos(ỹ) + cosh(x̃)
. (8)

The image of a line with fixed ỹ is an arc ending at (±1, 0) of a circle centered at (0,− cot ỹ) [42, Append. 2, Fig.
20]. Two such arcs form the upper and lower boundaries of our eye-shaped region at all times. An alternative to our
choice for a hyperbolic tangent map is to use parabolae to represent the edges of E(t); however, this choice leads
to a much more complex and time-dependent map [43].

Note that as x̃ → ±∞, (x, y) → (±1, 0), where E(t) has two corners whose angles change with time. As
explained below after (9), in practice we truncateR(t) by bounding |x̃ | and therefore excise from E(t) exponentially
small regions around the corners, leaving concave curves that always meet the upper and lower “eyelids” at right
angles. The original corners are not present in the biological tear film simulation problem, and they could introduce
singularities in the solution that would require special techniques to capture numerically.

A convenient feature of our setup is that the map f between R(t) and E(t) is constant in time, yet the moving
upper boundary of the stripR(t) maps to a curve that bears a plausible qualitative resemblance to a moving upper
eyelid. The geometry of R(t) and its moving boundary are easy to deal with computationally. Specifically, let us
define an additional change of variables to a fixed computational domain (x̂, ŷ) ∈ C = [−1, 1]2:

x̃ = γ x̂

α2 − x̂2
, ỹ = 1

2
(ŷ + 1)(λ(t) + 1) − 1, (9)

for some γ > 0 and α ≥ 1. The map between x̂ and x̃ tends to cluster points somewhat around x̃ = 0, partly
counteracting the tendency of f to crowd points in the (x, y)-plane near the corners of E(t). If α = 1 then the
image of C at time t is all of R(t), but in practice we choose α > 1. For our experiments, we used α = 1.6 and
γ = 7, which implies |x̃ | ≤ 4.487. The vertical lines at x̃ = ±4.487 map to circles of radius 0.022 centered at the
eye corners at ±1. We expect the physical domain truncation to have negligible effect beyond a few multiples of
this radius.

3.1 PDE transformation

The change of variables from R(t) to E(t) causes transformation of the PDE (1) due to the chain rule. The most
compact and elegant way to express these effects is by exploiting a correspondence between planar calculus and
complex variables, as described in Appendix A.

The additional change of variables from C to R(t) requires another application of the chain rule. The time
dependence of the map between y-coordinates in (9) has a significant consequence. It must be the case that

∂

∂ ỹ
= ∂ ŷ

∂ ỹ

∂

∂ ŷ
,

∂

∂t
= ∂ ŷ

∂t

∂

∂ ŷ
+ ∂

∂t
. (10)
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Simulation of parabolic flow on an eye-shaped 115

Hence, if we define ĥ(x̂, ŷ) = h̃(x̃, ỹ) = h(x, y), then

ĥt = h̃t − ∂ ŷ

∂t
ĥ ŷ = h̃t + λ̇(1 + ŷ)

λ + 1
ĥ ŷ, (11)

where λ̇ = dλ/dt . Thus an extra term is added to whatever expression is computed for h̃t in order to pass to ĥt ,
which is then evolved in the computational domain.

3.2 No-flux condition

The no-flux boundary condition (4) also transforms when mapping toR(t). We use the definitions and identities of
Appendix A to derive the result. Let q, n, and v denote the flux, normal, and velocity vectors in the original domain
E(t). In complex terms,

cx (q) = ψ(h) cx (∇h) = ψ(h)
cx

(
∇̃h̃

)

f ′(z̃)
= cx (q̃)

f ′(z̃)
,

where cx (·) is the complex-valued representation of a planar vector field and q̃ represents flux computed with
respect to the variables in R(t). Since complex quantities transform by a factor of f ′ under a conformal map, one
finds

cx (v) = f ′(z̃) cx (ṽ) , cx (n) = f ′(z̃)
| f ′(z̃)| cx (ñ) ,

where ṽ and ñ are the velocity and normal vectors in the strip domainR(t), respectively. The no-flux condition (4)
becomes

0 = n ·q − (n · v)h = Re
[
cx (n) cx(q) − cx (n) cx(v) h

]

= Re

{
f ′(z̃)

| f ′(z̃)| cx (ñ)

[
cx(q̃)

f ′(z̃)
− f ′(z̃) cx(ṽ) h

]}

= ñ · q̃
| f ′(z̃)| − | f ′(z̃)|(ñ · ṽ)h. (12)

The condition (12) is much more straightforward to compute in R(t) than (4) is in E(t), primarily because the
normal and velocity vectors are very simple, e.g., ñ = 〈0, 1〉 and ṽ = 〈0, λ̇〉 on the moving boundary.

3.3 Mass

The mass integral (5) transforms under coordinate changes as well. On the strip domain we have

M(t) =
∫

R(t)

h(x̃, ỹ)JR(x̃, ỹ) dx̃ d ỹ, (13)

where JR is the Jacobian determinant. Because the map f fromR(t) to E(t) is conformal, we have

JR(x̃, ỹ) = | f ′(z̃)|−2 = [
cosh(x̃) + cos(ỹ)

]2
. (14)

Similarly, the integral may be computed in C by a product with another Jacobian:

M(t) =
∫
C

h(x̂, ŷ)JR(x̃, ỹ)JC(x̂, ŷ) dx̂ d ŷ, (15)

where

JC(x̂, ŷ) = γ x̂(1 + λ(t))

2
(
α2 − x̂2

)2 . (16)
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4 Computational method

We use a Chebyshev tensor-product spectral collocation discretization [44]. Let N be a discretization size and define
the (one-dimensional) 2nd-kind Chebyshev points as

xk = − cos

(
(k − 1)π

N − 1

)
, k = 1, . . . , N . (17)

A function h(x) is represented by the N -vector
[
h(x1), . . . , h(xN )

]T. These N values define a unique polynomial
interpolant p(x) of degree less than N . Given analyticity of h(x) on a complex region containing [−1, 1], the max-
norm error ‖h − p‖∞ converges as O(CN ) for some C < 1, and

[
p(m)(x1), . . . , p(m)(xN )

]T converge spectrally
to sampled values of h(m)(x) for any integer differentiation order m > 0 [45]. The N × N matrix D in the mapping
⎡
⎢⎣
p′(x1)

...

p′(xN )

⎤
⎥⎦ = D

⎡
⎢⎣
p(x1)

...

p(xN )

⎤
⎥⎦ (18)

is the Chebyshev differentiation matrix. It is the discrete surrogate for the differentiation operator. We also use the
analog of definite integration, known as Clenshaw–Curtis quadrature [44], in which one computes an N -vector w
of quadrature weights such that

wT

⎡
⎢⎢⎢⎣
h(x1)
h(x2)

...

h(xN )

⎤
⎥⎥⎥⎦ =

∫ 1

−1
p(x) dx ≈

∫ 1

−1
h(x) dx . (19)

In the derivations that follow, we use the 
 operator, which is the Hadamard (elementwise) product between
matrices (i.e., the .* operator in MATLAB). We also find it convenient to make one more definition. Given any
function φ(x), let

diagx (φ) =

⎡
⎢⎢⎢⎣

φ(x1)
φ(x2)

. . .

φ(xN )

⎤
⎥⎥⎥⎦ . (20)

Left-multiplication by diagx (φ) corresponds to pointwise multiplication by φ(x) on the grid.

4.1 Method of lines

Let x̂i , i = 1, . . . , Nx and ŷ j , j = 1, . . . , Ny , be two Chebyshev grids. To discretize the square domain C, we use
the tensor-product grid

(x̂i , ŷ j ), i = 1, . . . , Nx , j = 1, . . . , Ny . (21)

We can represent the samples of a smooth function ĥ on this grid as an Nx × Ny matrix satisfying Hi j = ĥ(x̂i , ŷ j ).
Suppose that D̂x and D̂y are appropriately sized differentiation matrices. Then the spatial derivatives of ĥ on the
grid are spectrally approximated by[

∂ ĥ

∂ x̂
(x̂i , ŷ j )

]
i, j

≈ D̂x H,

[
∂ ĥ

∂ ŷ
(x̂i , ŷ j )

]
i, j

≈ (D̂y H
T)T = H D̂T

y . (22)
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The next step is to transform derivatives in C to those in the strip R(t). Considering (9) and (10), we define the
corresponding one-dimensional operators

D̃x = diagx̂

[ (
α2 − x2

)2
γ (α2 + x2)

]
D̂x , (23a)

D̃y(t) = 2

λ(t) + 1
D̂y . (23b)

Then left-multiplication by D̂x and right-multiplication by D̂T
y perform partial derivatives on the grid in R(t), as

in (22).
Next we consider the effect of the transformation between R(t) and the physical domain E(t). This is most

conveniently done by exploiting the connection between planar vector calculus and complex variables, as described
in Appendix A. Define the matrices

Fjk = 1

2
sech2[(x̃ j + i ỹk)/2], (24)

E jk = 2 cosh2[(x̃ j + i ỹk)/2], j = 1, . . . , Nx , k = 1, . . . , Ny, (25)

in which (x̃ j , ỹk) are the images of the grid points in C obtained from (9). The entries of F are values of f ′ at
the grid points, and the entries of E are the values of the complex derivative of the inverse map f −1. Also define
a matrix Ψ whose ( j, k) entry is ψ(Hjk). Then by (41a) and (43a), ∇h is computed from ∇̃h through pointwise
division by f ′. This leads to

G̃ = D̃x H + iH D̃y(t)
T, (26)

G = E 
 G̃, (27)

Q = −Ψ 
 G, (28)

as the grid approximations to ∇̃h, ∇h, and q = −ψ(h)∇h; note that the real and imaginary parts of G correspond
to hx and hy respectively, and the overline denotes complex conjugation. In similar fashion, we use (41b) and (43b)
to derive the following discretization of ∇ · q on the grid:

V = Re
{
E 


[
D̃x Q − i Q D̃y(t)

T
]}

. (29)

Finally, recall from (11) that a t-derivative in R(t) introduces an additional term in C. Hence the discretization
of the PDE in C can be expressed as the matrix ODE

dH

dt
= Φ(H) := V + λ̇(t)

λ(t) + 1
diagŷ

(
1 + ŷ

)
H D̂T

y . (30)

We should expect this system to be rather stiff. An N × N Chebyshev differentiation matrix has spectral radius
O(N 2), which becomes O(N 4) when applied twice in each dimension.

4.2 Boundary conditions

To impose boundary conditions, wemodify the ODE system (30) by replacing differential equations at the boundary
nodes by algebraic expressions of the appropriate conditions. Let B be the Nx × Ny boundary indicator matrix
with complement B ′, defined by
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B =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 0 · · · 0 1
...

...
...

...

1 0 · · · 0 1
1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦

, B ′ =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 1 · · · 1 0
...

...
...

...

0 1 · · · 1 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

. (31)

That is, each element of B is 1 at a grid boundary point and zero otherwise, and the matrices B and B ′ sum to a
matrix of all ones. For any boundary condition, we replace (30) by

B ′ 
 Ht = B 
 R + B ′ 
 Φ(H), (32)

where R is the residual value of boundary condition equations at the boundary points. For instance, ifW (r, s, t) is an
Nx ×Ny matrix whose boundary entries represent Dirichlet values for the solution, then R = H −W . Equation (32)
is an index-1 differential–algebraic equation (DAE) for H . We use the MATLAB function ode15s to solve such
systems.

For no-flux conditions, the boundary entries of R are computed from the condition (12), which is equivalent
to (4). For the left and right boundaries of R(t), i.e., the first and the last rows on the grid, the values are Re(G̃),
and for the bottom of R(t) (first column of the grid), the values are Im(G̃). Finally, for the moving top boundary,
the values come from

E 
 Ψ 
 Im(G̃) − λ̇(t)F 
 H.

4.3 Computation of mass

The mass integral M(t) in (5) is computed using Clenshaw–Curtis quadrature as defined in (19). We need to
incorporate the Jacobians from the mappings as indicated in (15). Let ŵx and ŵy be the Clenshaw–Curtis weight
vectors of length Nx and Ny respectively. We represent the Jacobians in the integrand in (15) by the matrix S, where

Si j (t) = JR(x̃i , ỹ j )JC(x̂i , ŷ j ), i = 1, . . . , Nx , j = 1, . . . , Ny .

Then the mass integral is computed as

M(t) ≈ ŵT
x

[
S(t) 
 H(t)

]
ŵy . (33)

4.4 Lid motion

The observed lid motion during a blink is primarily by the upper lid descending to the lower lid, and the outer
canthus being pulled in about 10–20% of the horizontal width of the palpebral fissure [46].We neglect the horizontal
contraction here, and move only the upper boundary while keeping the locations corresponding to the canthi fixed.
Various formulations for the motion of the upper lid have been proposed. Berke and Müller [47] proposed a product
of a monomial with decaying exponential for the opening phase of the blink; a similar function was proposed in
[26]. A more complex function was proposed in [24], which has been used in several subsequent papers. For full
blink cycles, a sinusoidal function was used in [17], and a more realistic function was proposed in [18], which
has also been used subsequently. Here we use a simplified periodic lid motion function which improves upon the
sinusoidal version, but is still simpler than the realistic versions.

In all of the experiments reported below, we use the lid motion function:

λ(t) = 1 − c + c tanh
(
4 cos(2πνt)

)
, (34)

where c represents the maximum percentage closure of the eye and ν is the frequency of the blink. This function is
periodic with significant pauses at the fully open and fully closed phases, as shown in Fig. 2 for c = 0.8 and ν = 1.
This motion is prescribed in the strip domain R(t) and mapped to the lens domain via (8).
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Simulation of parabolic flow on an eye-shaped 119

Fig. 2 One and a half
periods of the upper lid
motion function (34), with
c = 0.8 and ν = 1
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-0.5

0

0.5
t = 0.01875

0 1 2 3 4 5 6 7 8

Fig. 3 Computed solution of the heat equation with a free-space Dirichlet boundary condition. The eye is initially fully open with a
Gaussian solution ranging from zero (dark blue) to 8 (yellow). The Gaussian spreads as the eyelid moves, and it is unaffected by the
moving boundary. (Color figure online)

5 Numerical results

Computations were executed in MATLAB 2016b using ode15s as the time integrator for the DAE (32). The
reported computation times are for a 2014 iMac (4 GHz Intel Core i7) running macOS 10.12.2.

5.1 Heat equation with known solution

The first results are for (1) with q = −∇h, i.e. the heat equation with unit diffusion constant. For the lid motions, we
used c = 0.8 as the closure fraction and ν = 16 as the frequency in (34). The initial and boundary conditions were
used to make the exact solution equal the free-space heat kernel as in (3) with t0 = 0.01, x0 = 0.1, and y0 = 0.2.
Using a 28×24 grid and time integration error tolerance set to 10−9, the solution took 11.3 seconds to compute two
full blink cycles (up to t = 1/8).

Snapshots of the computed solution are shown in Fig. 3. The computed solution shows two expected tendencies:
there are no effects from the moving boundaries, and the solution becomes smoother with time in a symmetric
fashion around (x0, y0). The decay of the free-space Green’s function is relatively fast compared to the lid motion
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120 T. A. Driscoll et al.

Fig. 4 Error in the
computed solution of Fig. 3,
as measured by square
integration over the physical
domain and relative to the
exact solution
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in this case. In Fig. 4, we plot the relative error

‖hcomp(x, y, t) − h(x, y, t)‖E(t)

‖h(x, y, t)‖E(t)
,

in which h is the known exact solution and the norm is defined using square integration over the physical domain
(as performed spectrally in C). We see that the solution is accurate to five digits initially and improves at more or
less an exponential rate as the solution proceeds, until the solution is zero relative to the initial condition. This level
of accuracy is expected for such a smooth solution using spectral methods.

5.2 Porous medium equation

Our next example is the porous medium equation with flux:

q = −[(1 − κ)h + κ]∇h, (35)

for 0 < κ ≤ 1. The lid motion function was (34) with closure fraction c = 0.7 and frequency ν = 1. The initial
condition was specified in the strip domain R(0) as

h̃(0, x̃, ỹ) = 1 − 0.8e−6(ỹ+0.2)2−4(x̃−1)2 . (36)

This is not a Gaussian function in the physical domain E(0). We chose the mass-conserving flux boundary condition
as described in Sect. 3.2.

For this problem, we used a 32 × 48 grid and a time integrator tolerance of 10−9. It took approximately 73
seconds to solve for two complete blink cycles with κ = 0.5; the solution at selected times is presented in Fig. 5.
(Computation times for other values of κ were similar.) For our parameters, the influence of the initial condition
disappears from the solution quickly. The solution develops a boundary layer along the descending upper boundary
where h is increased; see t = 0.25. When the upper boundary is ascending, there is also a boundary layer but at
these times h is decreased near the boundary (t = 0.75). There is a pause in the lid position around t = 0.5, which
allows h to become uniform across the domain.

Since the boundary conditions conserve mass while the numerical methods do not explicitly do so, we use the
computed relative change in the total mass as an indicator of the accuracy of the computation. As demonstrated by
the conservation results in Fig. 6 for several values of κ , we feel justified in claiming six-digit pointwise accuracy for
the computation. The size of the error appears to be related to the relative strength of the nonlinearity and changes
very little after just a few time steps. The relatively modest number of grid points appears to resolve the boundary
layers and boundary conditions quite well.

5.3 Thin-film analog

Our closest second-order analog to the thin-film problem is the equation

q = −[A − Bh−3]∇h, (37)

123



Simulation of parabolic flow on an eye-shaped 121

-0.5

0

0.5
t = 0

-0.5

0

0.5
t = 0.25

-0.5

0

0.5
t = 0.5

-0.5

0

0.5
t = 0.75

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5 Computed solution of the porous medium equation (35) with a mass-conserving boundary condition. The solution ranges from
about zero (dark blue) to about 4 (near t = 0.25, yellow). (Color figure online)
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for constants A and B. This equation may be obtained from standard thin-film equations by eliminating the third-
order derivative terms in the flux for the fluid flow [48–50]. In terms of fluid mechanics, this can correspond to
retaining the gravitational and van der Waals terms but eliminating the effect of surface tension of the tear/air
interface. This choice would not be in keeping with in vivo tear films, but it is a simpler and lower-order problem
that retains some of the needed terms from the thin-film equations.

The nonlinear term in (37) creates a preference for a flat solution at the value (B/A)1/3. This happens both in
this model and in thin-film models, and it has been used for the so-called precursor films and dewetting problems
[49]. When h = (B/A)1/3, the terms preceding the gradient in (37) become zero, and it is possible that the PDE
reduces to ht = 0 at that point. This happens when the derivatives h near that point are also small. It is not a priori
evident that this should occur in the computations, but it does here as well as in thin-film problems [49]. Once such
a solution is established in one region, it can serve as a barrier to diffusion through that region. Our simulations used
A = 1 and B = 10−6. The lid motion had closure fraction c = 0.8 and frequency ν = 1. The initial condition was
constant: h(0, x, y) = 0.1. The boundary condition again used the flux to conserve total mass in the exact solution.

Using a 31×40 grid with time integrator tolerance set to 10−7, computing up to t = 2 (two blink cycles) took 40
seconds. Validations of the results at higher resolution change the solution by less than 10−4 pointwise. Snapshots

123



122 T. A. Driscoll et al.

-0.5

0

0.5
t = 0

-0.5

0

0.5
t = 0.25

-0.5

0

0.5
t = 0.5

-0.5

0

0.5
t = 0.75

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 7 Computed solution of the thin-film analog equation (37) with a mass-conserving boundary condition. The solution ranges from
zero (dark blue) to about 0.75 (yellow). (Color figure online)
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Fig. 8 Film height at the centers of the upper and lower lids for
computed solutions of the thin-film analog equation (37). See also
Fig. 7

Fig. 9 Mass change in computed solutions of the thin-film analog
equation (37). The exact solution has zero mass change

of the result are shown in Fig. 7. During the downward motion of the upper edge at t = 0.25, the solution h builds
up at the boundary forming a steep local boundary layer around y = 0. The pause at t = 0.5, at which the domain
has minimum area, allows h to become essentially uniform at about h = 0.42, more than four times the value of
the initial condition. During the upward motion at t = 0.75, h is locally depleted near the center of the moving
edge, again forming a boundary layer there. Figure 8 shows the solution at the midpoints (along x = 0) of the upper
and lower edges or “lids” of the moving domain. The localized changes around the center of the moving upper
boundary are clearly seen. Among the times t j = j/100 for integer j , the solution at the upper lid takes a minimum
value of h ≈ 0.01067 at t = 0.78 in the first cycle. The tendency to quickly form a uniform state around t = 0.5 is
also clear. The mass conservation error plotted in Fig. 9 suggests that we have obtained five-digit accuracy for the
solution.
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If we decrease the initial thickness of the solution, the time integrator stagnates near the time ofmaximum upward
velocity of the upper lid (corresponding to t = 0.78 in the last case). This stagnation time seems to remain constant
as the spatial grid is refined. We speculate that as the lid opens there may be insufficient material to prevent the
solution from reaching zero, which appears to cause nonexistence of the PDE solution [37].

6 Discussion

Conformal mappings allowed us to compute answers accurately in a simple computational square and transfer
the results back to a moving eye-shaped domain. In particular, the map from the intermediate strip domain to the
eye-shaped domain was time independent, and its simplicity greatly facilitated the computation. Also, the strip
domain allowed a simple expression for the moving boundary.

Using a linear heat equation with an exact free-space Green’s function solution, we demonstrated that we can
accurately recover the solution to that problem. We achieved high accuracy with a relatively small number of grid
points in each direction, as is to be expected for a spectral method applied to a smooth solution.

We then moved to a type of porous medium equation in which the “diffusivity” was a linear function that
interpolated between a porous medium equation and the linear heat equation. We could again obtain solutions that
conserved mass very well with relatively few grid points. The conservation of mass was used a proxy for accuracy
in the nonlinear equations in the absence of an exact solution. For our final model problem, we studied a nonlinear
diffusion equation with both positive and negative powers of the dependent variable, in an effort to mimic the
expected dynamics of the tear film on the moving domain we used. We observed transient boundary layers as may
be expected for the thin-film problem (e.g., [18,20,21,24]). The error in mass conservation was again small, with
a relatively small number of grid points in each direction. The numerical method did have difficulty when the
thickness reached an expected equilibrium value; resolving that difficulty is beyond the scope of this paper.

The main appeal of our method is the ability to compute solutions of nonlinear PDEs on nontrivial geometry
with excellent accuracy using a small amount (seconds or minutes) of desktop computing time. The method is also
straightforward to code, requiring fewer than 200 lines of MATLAB in our implementation. Mainly one only needs
to undertake careful accounting of the chain rule, as geometric considerations are simplified by the conformality of
the key variable transformation.

However, conformality is a very limiting requirement for a transformation. Only a select few domains can be
mapped to a rectilinear counterpart by closed-form expressions, though many more such maps can be approximated
numerically with good results [51,52]. In our case, the map also transforms parallel lines within the strip to
desirable contours, allowing us to simplify the intended motion to a purely vertical one. This condition might be
hard to generalize to other situations, though relaxing the property of the map from conformal to orthogonal might
expand the possibilities.

Turning to future work, extending the model to treat the fourth order thin-film problem is needed to more directly
study the tear film. Based on 1D experience [18], we anticipate writing the fourth-order PDE as a system of two
second-order equations in order to impose physically relevant boundary conditions. This doubles the number of
unknowns and would scale the work in the stiff solver by a factor of 8. Furthermore, we anticipate steeper gradients
within the solution, necessitating higher spatial resolution. We may therefore need to explore the use of iterative
methods for the implicit time stepping, or an implicit/explicit time stepping method.

An important aspect of in vivo tear dynamics is the influx and efflux of tears during the blink cycle. In his theory
of the lacrimal system, Doane [53] proposed that significant drainage along the lid margins begins with the lids
about halfway open, and that it ends up to 3s after the lids have fully opened. New tear fluid is supplied from
the lacrimal gland which secretes the aqueous part of the tear film and enters the exposed tear film from beneath
the upper lid near the outer (temporal) canthus [14,54]. The aqueous part of tears exits via the puncta which are
small holes found near the nasal canthus. Tear film models have incorporated lacrimal gland supply and punctal
drainage as well, in both one-dimensional [18,20,21,25] and two-dimensional [29,30] models. In future work, we
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will incorporate the flux conditions of lacrimal gland and punctal drainage as the previous 2D models, and compare
the results with relevant experiments [14,30].

Incorporating more realistic lid motion functions for the blink cycle [18,19] would be a valuable extension as
well.

Acknowledgements This work was supported by NSF Grant DMS-1412085. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Appendix A: Complex-variable expressions for 2D vector fields

There are ways to express two-dimensional vector fields and vector calculus that can simplify derivations and
computations relating to changing variables. For a vector field r(x, y) = 〈r1(x, y), r2(x, y)〉, define
cx (r) = cx

(〈
r1(x, y), r2(x, y)

〉) = r1(x, y) + ir2(x, y) (38)

Then it is easy to confirm that for two vector fields r and s,

r · s = Re
[
cx(r) cx (s)

]
, (39)

where the overline indicates complex conjugation of the result. Next define a gradient operator and its complexifi-
cation by

∇ =
〈

∂

∂x
,

∂

∂y

〉
, cx (∇) = ∂

∂x
+ i

∂

∂y
, cx(∇) = ∂

∂x
− i

∂

∂y
. (40)

Then it is easily checked that for any differentiable scalar function φ and vector field r,

cx (∇φ) = cx (∇) φ, (41a)

∇ · r = Re
[
cx(∇) cx (r)

]
, (41b)

∇2φ = cx(∇) cx (∇) φ. (41c)

Now suppose that we use a conformal map f to change variables; specifically, let the connection between two
planes be

z = x + iy = f (x̃ + i ỹ) = f (z̃). (42)

Let φ̃(x̃, ỹ) = φ(x, y) and r̃(x̃, ỹ) = r(x, y), subject to (42), and let (40) be extended to the case with tildes on ∇,
x , and y. Then we have the identities

cx
(
∇̃φ̃

)
= f ′(z̃) cx (∇φ) , (43a)

∇̃ · r̃ = Re
[
f ′(z̃)cx(∇) cx (r)

]
, (43b)

∇̃2φ̃ = ∣∣ f ′(z̃)
∣∣2 ∇2φ, (43c)

where the prime on f indicates usual differentiation in a complex variable.
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