
Searching for Rare Growth Factors Using Multicanonical Monte Carlo Methods
Author(s): Tobin A. Driscoll and Kara L. Maki
Source: SIAM Review, Vol. 49, No. 4 (Dec., 2007), pp. 673-692
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/20454030 .

Accessed: 28/06/2013 12:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Review.

http://www.jstor.org

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/20454030?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

SIAM REVIEW () 2007 Society for Industrial and Applied Mathematics
Vol. 49, No. 4, pp. 673-692

Searching for Rare Growth
Factors Using Multicanonical
Monte Carlo Methods*

Tobin A. Driscolit
Kara L. Makit

Abstract. The growth factor of a matrix quantifies the amount of potential error growth possible
when a linear system is solved using Gaussian elimination with row pivoting. While it is
an easy matter [N. J. Higham and D. J. Higham, SIAM J. Matrix Anal. Appl., 10 (1989),
pp. 155-164] to construct examples of n x n matrices having any growth factor up to
the maximum of 2 n-1, the weight of experience and analysis [N. J. Higham, Accuracy
and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996], [L. N. Trefethen and
R. S. Schreiber, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 335-360], [L. N. Trefethen
and I. D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, 1997] suggest that matrices
with exponentially large growth factors are exceedingly rare. Here we show how to conduct
numerical experiments on random matrices using a multicanonical Monte Carlo method
to explore the tails of growth factor probability distributions. Our results suggest, for
example, that the occurrence of an 8 x 8 matrix with a growth factor of 40 is on the order
of a once-in-the-age-of-the-universe event.

Key words. Gaussian elimination, growth factors, Markov chain Monte Carlo, multicanonical Monte
Carlo

AMS subject classifications. 15A52, 65C05, 65C40, 65F05

DOI. 10.1137/050637662

1. Introduction. It has long been known that Gaussian elimination, even with
the common expedient of row pivoting, can be disastrously inaccurate for solving
certain linear systems. For example, using the MATLAB operator \ on a particular
system, we find

>> A = toeplitz([1 -ones(1,59)],[1 zeros(1,59)]); A(:,60)=1;
>> randn('state',3383) % for reproducibility
>> x = randn(60,1); b = A*x;
>> xl = A\b;
>> norm(x-xl)/norm(x)
ans =

0.3402

Considering that the data are accurate to 16 decimal digits, the method fails utterly.
Usually we are able to explain such a failure in terms of the condition number s(A),

*
Received by the editors August 5, 2005; accepted for publication (in revised form) March 2,

2007; published electronically November 1, 2007. The computational work was made possible by
NSF SCREMS grant DMS-0322583.

http://www.siam.org/journals/sirev/49-4/63766.html
'''Department of Mathematical Sciences, University of Delaware, Ewing Hall, Newark, DE 19716

(driscoll@math.udel.edu, maki@math.udel.edu).

673

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

674 TOBIN A. DRISCOLL AND KARA L. MAKI

which measures the sensitivity of x in the problem Ax = b to perturbations in A and
b. In this case, however, poor conditioning is not responsible:

>> cond(A)
ans =

26.8035
Only one decimal digit of lost accuracy can thus be explained by the nature of the
problem. Ordinarily we would then conclude that the algorithm is responsible and
therefore unstable.

Why does MATLAB and other software and textbooks present an apparently
unstable algorithm as the default choice for solving linear systems? Indeed, even
though "Gaussian" elimination is ancient, appearing recognizably for a 3 x 3 system
in the Chinese text Nine Chapters on the Mathematical Art, thought to be over 2,000
years old [3], experts in the early days of digital computing were rather pessimistic
about its computational prospects. (See the summary and references in [22].) How
ever, the algorithm was well known, the fastest available, and widely used without
incident, so that confidence in it quickly grew. Today, all experts agree that the exam
ple above-deliberately chosen to illustrate the dangers of Gaussian elimination is
nowhere close to typical or average. In fact, one must consider it pathological; only in
the early 1990s, for instance, did a few applications with large growth factors begin to
be noted in the literature [10, 26]. Efforts have been made to explain this phenomenon,
with some success (see [15, 22] and especially, as noted below, [21, Chap. 22]), yet the
matter is far from completely understood.

In this article we try to add some computational evidence to reinforce the pre
vailing wisdom. We study the growth factors of random matrices. The growth factor
(defined in the next section) quantifies the amount of mayhem possible in Gaussian
elimination. While it can be as large as 2n-1 for an n x n matrix, as in the example
above, the occurrence of a growth factor even as large as n is quite rare so rare, in

fact, that it is difficult to measure using naive experimentation with random matrices.
The effect is analogous to waiting for the million proverbial monkeys to type out the
works of Shakespeare spontaneously.1

Capturing rare events can be made practical, however, if we are willing to tinker
with the simulation process. Suppose we give our monkeys an editor who is already
familiar with Shakespeare. The editor will not simply accept everything the monkeys
type, preferring instead to keep them on track. Thus, if the monkeys have so far

managed "To be or no," the editor might be very likely to reject anything other than
a "t" next. This greatly decreases the amount of time we expect to wait for the Hamlet

soliloquy. Of course, to keep the statistics fair, we have to track the rejections made
by the editor. Roughly speaking, this is the approach we take for growth factors.

2. Growth Factors. The growth factor was introduced to aid in rounding error

analysis of the solution to Ax = b, as found by Gaussian elimination. The most

common form of this algorithm is found in any numerical analysis textbook. First,
factor PA = LU using row-pivoted elimination; here, P is a permutation matrix, L

is unit lower triangular (lower triangular with ones on the diagonal), and U is upper
triangular. Define c = Pb. Solve Lz = c for z with forward substitution and then
solve Ux = z for x with backward substitution.

'Mathematically, one monkey is as good as a million in this effort.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 675

With this in mind, one way to define the growth factor of A is

(2.1) p(A) = maxij U?j
maxij ai

(This is not to be confused with the spectral radius of A, also frequently denoted
p(A).) Another definition of the growth factor [12, 14] involves all the intermediate
matrices of the elimination process, not just the final one. Our version is a lower bound
of this alternative and is more convenient to compute; it has appeared in [8, 21] and
is returned by the LAPACK routines xGESVX for linear system solutions [1]. Both
variations share the upper bound p(A) < 2n-1. Because the matrices in the factor
ization depend on discrete decisions about row swaps made during the elimination
process, p is not a continuous function.

If x is the solution to Ax = b computed as described above on a floating-point
computer, then one of a family of similar results is [12]

(2.2) (A + 6A)> = b for some iA with 1 6Ag loo < 3n3up(A)IAIlo,

where u is unit roundoff (half the distance between 1 and the next larger floating-point
number), and IIB I 1 is the induced operator max-norm of matrix B, or the maximum
row sum in IBI. The derivation of the bound accounts for rounding errors introduced
during both elimination and triangular system solving.

Let us reconsider the MATLAB example of the introduction in light of the error
result (2.2). The first line in the example defines A as a matrix of the form

1 0 0*** 01
-1 1 0 ... 0 1
-1 -1 1 ... 0 1

(2.3) A=

-1 -. -. *. 1 1

-1 -1 --. -1 -1 1

Each row elimination doubles an element in the last column, so this matrix achieves
the upper bound p(A) 2n1, as pointed out by Wilkinson [25]. With n = 60, the
bound (2.2) allows the perturbation 5A to have a norm larger than that of A, since
u = 2-52 in MATLAB.

This example is actually special in that the L and U factors, found to be

(2.4) L=[1 1 u L 1 21

-1 *--1 1 2 n -1

are computed exactly, as the Gaussian elimination steps all involve operations on
integers only. Therefore, all of the error in this example is introduced during the
triangular solves, and we need only appeal to the usual perturbation analysis for linear
systems. In fact, the experiment of Figure 1 suggests that the condition number of U
alone captures the essence of the numerical difficulty in solving Ax = b. Hence the flaw
in row-pivoted Ganssian elimination is not a difficnlty in finding the correct L and U

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

676 TOBIN A. DRISCOLL AND KARA L. MAKI

for n=1:60
A=toeplitz([1 -ones(1,n-1)],[1 zeros(1,n-1)]); A(:,n)=1;
x=randn(n,1); b=A*x;
err(n)=norm(A\b - x);
[L,U]=lu(A); condU(n)=cond(U);
rho(n)=max(max(abs(U)))/max(max(abs(A)));

end
semilogy(1:60,err,'b', 1:60,eps*condU,'k', 1:60,eps*rho,'r')

105
error

100
- eps*cond(U)

eps*rho

1o-5

1-15
10

0 10 20 30 40 50 60
n

Fig. I Code and error plot for the solution to Ax=b, where A is of the form (2.3), along with p(A)

and the condition number of the computed matrix U. In MATLAB, eps is the relative error

in the machine representation of real numbers, which represents a mathematical perturbation.

factors in the presence of rounding errors, but in the more fundamental idea of trying
to use these factors to solve a linear system in the presence of roundoff.

While this flaw runs deep, it is exceedingly narrow. We reiterate that it has long
been observed that matrices with even modestly sized growth factors have proven to
be very rare. For instance, based on experiments partially reproduced in Figure 3,

Trefethen and Bau in [21, Chap. 22] all but conjecture that for any a > 2 and M > 0,

the probability of encountering p > na among random matrices is less than n-M for
sufficiently large n.

In the sections to follow, we introduce and illustrate a method motivated by
statistical physics for exploring just how rare large growth factors are among random
matrices.

3. Monte Carlo Simulations. We next need to define what we mean by random
matrices. Let n be a natural number. We will represent an n x n matrix somewhat
unusually by the symbol x, where x is a vector of N = n2 real numbers (though
nothing in our methods precludes the use of complex matrices). The probability of
choosing a particular x is controlled by a probability density function (pdf) r(x). The
model we shall use is

N2
(3.1) 7r(x) = fJ Xk /2

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 677

which is simply a multidimensional normal distribution with unit variance in each
entry of x. A fundamental property of any pdf is that

00o OO
.. 7r(x) dx1 ..dxN =J 7r(x) dx=1

-00 -00X

where Q is the state space RN of all real n x n matrices.
We do not attempt to argue that matrices drawn with a probability according

to (3.1) are somehow natural or even typical whatever those terms might mean. The
pdf simply serves as one way to systematically specify how matrices are to be chosen.
Another simple pdf would be to choose each element of x uniformly from the interval
[-1, 1]. One could also easily adapt our methods to select among only symmetric

matrices or those with a specific sparsity pattern, for example.
For each randomly selected x we can compute its growth factor p(x), where 0 <

p(x) < 2n1. In the language of probability theory, both x and p are random variables.
We now set ourselves the task of finding the pdf for the random variable p. We
first discretize this pdf by dividing the range of achievable growth factors into bins,
0 = P0 <P1 < < PB = 2n1, and letting Pb be the probability that p lands in bin
b when x is drawn according to wr(x). The probability Pb can also be expressed as the
expected value (i.e., average value) of a function indicating when p lands in bin b as
x is drawn according to 7r(x). Symbolically,

(3.2) Pb= wr(x) dx = xb(x)7r(x) dx = E [Xb] v b = 1, ..., B,

where Qb ={X C Q: Pb-i < p(X) < Pb} consists of all x landing in bin b, and Xb iS
the indicator function

(3.3) Xb (x)
I

(ifXeQb
0, otherwise.

A simple consequence of our definitions is that Eb=l Pb = 1.
Expressing Pb as an average suggests a fairly obvious experimental approach to

approximating its value. If we draw M samples x(1). . , x(M) according to the density
function wr, then it seems that we could use

M

(3.4) Pb= E Xb(X(m))
m=1

as an estimate of Pb. In practice, drawing the samples from the distribution 7r is
readily achievable, as virtually all computing languages and environments include
high-quality generators of normal random (technically, pseudorandom) numbers. In
MATLAB one uses randn.

From the perspective of probability theory, the sampling process produces a se
quence of M independent random variables X(.. , (M) each with pdf rr. Using the
linearity of the expectation operator, we find that the expected value of Pb is indeed

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

678 TOBIN A. DRISCOLL AND KARA L. MAKI

just what we seek:

M
E[pb] =M E [Xb (x(m))]

m=

-M E J Xb (X(M))W(X(M)) dx

1 M1
5 Pb Pb

m=

The technique described in the previous paragraph is very well known as the

Monte Carlo method so named after the famous European gambling resort, in honor
of an uncle of the mathematician Stanislaw Ulam [23]. We will illustrate the method
first on a simpler problem of classical interest, the random walk. In this problem, a

monkey (on a coffee break from typing) starts at the origin and flips a fair coin. If it
is heads, the monkey walks to the right; if tails, the monkey stays put. Where can we
expect the monkey to be after N flips?

To use our terminology, let x again be a vector of N components, where each

component is selected from the binary set {0, 1}, and define p(x) as the sum of the
elements of x. The state space Q of all possible x is finite, with 2N elements, and
the integrals over Q above can be written as sums. The appropriate probability
distribution is now uniform, meaning that each vector of coin flips is equally likely:

7r(x) = 2-N. Furthermore, the only possible outcomes for p are integers from 0 to N,

so we can let each bin contain just one integer and estimate the actual pdf of p, not

just a discretization of it.
Figure 2 shows the results of a MATLAB Monte Carlo experiment for the random

walk. The behavior of the walk is well understood, and p is known to obey the binomial

distribution

Pb
-
2-() b = O ...,IN.

This is shown for comparison to the experimental result. The estimates Pb are shown
with vertical line segments to indicate confidence intervals of three standard deviations

(more on this below).
Monte Carlo experiments for growth factors have been performed by Trefethen

and Bau and appeared in their textbook [21]. One of their figures is reproduced here

as Figure 3. From Trefethen and Bau's results we can see that the probability of

encountering a matrix with growth factor p decreases rapidly with p. Indeed, while a

growth factor of 2m-1 can be observed, Trefethen and Bau reported only two matrices

out of a total of one million that have a growth factor as large as n, and the largest
overall was p 11.99.

Figures 2 and 3 clearly show a major shortcoming of the Monte Carlo method: it

becomes less informative as the measured probability drops. For relatively common

events, i.e., larger values of the pdf, the estimates are good and our confidence in them
is high, but as one moves out into the tails the estimates deteriorate and then fail

altogether. The reason is obvious by definition, rare cases are rarely encountered by
chance, and thus it is hard to compile meaningful statistics about them in experiments.
Another point of view is that values in the tail of the pdf are found accurately relative
only to the overall maximum of the pdf, and not to the values themselves.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 679

N = 100; % number of walking steps
M = ie6; % number of MC trials
hit = zero,s(N+1,1); 'A hits in each bin
fact = [1 cumprod(l:N)]'; % vector of factorials
exactpdf = fact(N+i) ./ (2-N*fact.*fact(N+1:-i:i));
semilogy(0:N,exactpdf,'k-'), hold on

for m = i:M % Monte Carlo trials

r = rand(l,N); % uniform in [0,1]
x = double(r>0.5); 'A results of the coin flips
rho = sum(x);

hit(rho+l) = hit(rho+1)+i;
end

p = hit/M; % pdf for rho
semilogy(0:N,p, '*')
sigma = sqrt((p-p7.^2)/(M-1)); 'A std deviation
upper = p+3*sigma; lower=max(realmin,p-3*sigma);
plot([0:N;0:N],[lower'; upper'],'b')

0

1. 12-5 04 4'

Q -10*

ii10 |L

x
v1~~~~~~~~

. -10 51

.0~~~~~~~~0
o -201t

10
-6

10~~~~1
25 30 35 40 45 50

0 20 40 60 80 100
p

Fig. 2 MATLAB Monte Carlo experiment for the random walk. The circles show the results; the
curve is the analytically known answer. After 106 realizations, only a small part of the pdf is
captured, and for probabilities near 10-6 the relative, confidence (as indicated by the vertical
line segments) in the Monte. Carlo estimates is poor..

The sample size M is. the main parameter available in the Monte Carlo method
and is of major importance to our approxiionm Pb. We expect that Pb - Pb ap
proaches zero as M increases. Indeed, the strong form of the law of large numbers says
that the probability of this not happening is zero.. However, the rate of convergence
in the limiting process turns out to be critical. To study this rate, we consider the
variance of Pb, defined as

(3.5) Va8r EPb] =E [0Pb-E P] E EPD2]~ - (F Pb2.)

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

680 TOBIN A. DRISCOLL AND KARA L. MAKI

.... i S i~~~~~~ .i ,L

t~~~~~~~~~ I
~~~~~~~~~~~~~~~~~....... ... .. \ . .... v... ;; 

~~~~~~~~~~~~~~~~~~~~~....... --- ._ .\ .F .4 _. f.i*.. 

-e jit - f \ > N b 2 9~~~~.+ 5...
probabilitym........

density107 P
m a

0 1 2 3 t4 4 3 . I 8 I 1 0 ..

JlJFig.JlsP 3 Pdfs fo g wWsrowth factor Ss<sts \ s o r wando m Sa JFMwF*sEtrices of d imen+s ionso 8, 16 an 32 [2] Coyih

The econequlit fllw eaily fro th liert of exetain Varianceisa

A?no;+~~~~~~~~~~~~~~~~~...wX~t;

+= wws-tr -r- *--_s-M

measure of the spread in a random variable. In.order to have a. mear wt t

same~~~~~~~~v unt as th variabe it ^Nself, we ca tak th sqar roo of vaiac to get the **F4s

J: S b * ~. . bg@v+.s tXs. v4 +VbP+ v 4_wzwx,+ws2w,PP**. . __.. X. 2 E_.. _
..' g= - ---*** *t tt +*--*

. .. ̂ +w.
. g.
_+*. r..,

normal. Weknw 3tha tes ex peted vales of thim ions dist ibuti 32n f Pb i ghs sogt

aftr9b.9hu forit larg MndutPba and verylikely MtohemawithRpintaedwstandardmdeviation

one seither sieqoflity Usingw (3.4), srome more elemen tay thexeoryabiout Variance,i an

thme factsa thatxex Xaib(x)tel, we cmpute k h qaero f ainet eh

This central limit theor formula p pea s i od mei Vr [X

randm vaiabls ha a

compiutaontioni ofithe confideceubarseinseFigurexi2.2

l

normal.~~~~~~~~~~~~~~~ Wknw tha th .e.xpecJfted5*s valuPe of thi zs distribution for ? s pb is theSB sought-z

afinally, weu onsidrer how Pisvrlkeytbewthena e standard deviationscmae otesaitcP

itself.ither rtio of st_ anida deviaion torexetti s w the* cofiance an o
vhefariati thanits role i simila two that o e . In

}*M 2 W

M2 ; , b >K

f A_
-2 P.

-
4 ti*ss

Th~~~~~~~~~~~~~~~is foml ap,pea.r b& -,s ,in ou coptt*---__*_io of th cofdec bar in Fiur 2.2 * *

Finally,~~~~~~ we consid .v ->er ho w th- e _s wztanda rd d _f**e tq.viatio copre to.j th statsi P.

Fitsl. 3TPfsfo gratowtatr of sad rdevation mtoricectatimensios 8,n16, and the coe].Copyright

vareateconad eqaits rolelowsila totasil fof thelaiveacuacyt in expectaical Variancesis. In

2Dividing by M - 1 rather than M is a well-known consequence when the estimates Pb are used
in place of the exact values Pb; the actual difference here is negligible.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 681

our notation it equals

(3.6) CV(Pb) 1 P(-P (
Pb M Pb M

We now see clearly that the uncertainty or variability associated with the result of
the Monte Carlo method decreases like M-1/2. That is, to reduce CV(pb) by half, we
need to take four times as many samples.

A second observation from (3.6), and the one most relevant to the remainder of
this paper, is that if a bin is visited rarely, so that Pb < 1, then M must be at least on
the order of PC'1 for the method to succeed. This is a quantitative statement about
the difficulty of simulating the tail of the distribution. Hence it is no coincidence in

Figure 2 that when using a million samples, the estimates lose accuracy and vanish
just as one approaches a probability of 10-6. To achieve, say, just CV(pb) = 10%
when Pb = 10-9, we would need M 1011 trials, which might test our patience even

on a fast computer.

4. Multicanonical Simulations. The difficulty of getting into the tail of the pdf
is that bins in the tail are visited rarely. How do we rectify this situation? Clearly

we need to load the dice, in the form of choosing samples not from the distribution ir

but from an alternative '7. In light of our experience, our guiding principle will be to
try to ensure that all of the histogram bins get visited equally. To this end, we define

rr(x) w()= Xb (x)
(4.1) WX(X) = w(x) b=1 Wb

where Wl,.. . , WB are positive constants that change the weights of the different bins.

Choosing them defines the new sampling strategy. They are constrained by the fact
that r must satisfy

B B

(4.2) 1 = / 7(x) dx = E f Wb7(x) dx = E PbWb.
b= Qb b=1

If we draw samples according to 7r rather than rr, the expectation in each bin
becomes

(4.3) E [Xb]=j Xb(x) 7(x) dx=j Wbw (x) dx = PbWb
Q Q~~~~~~~~b

We have used a hat on the expectation functional to emphasize that it is with respect
to a new sampling pdf. Equal sampling therefore occurs if PbWb is independent of the
bin number b. Using (4.2) we find that PbWb = 1/B in the ideally equidistributed
case.

With the new sampling strategy, we can define Monte Carlo estimates Pb and
approximate Pb by

~ 1 M
(4.4) Pb = W = Xb(X (m), Wb WbMV m= 1b

where the x(m) are drawn independently from 7r. We see from (4.3) that E [Pb] = Pb
as before. However, the key point is that the variance has changed. Again using the

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

682 TOBIN A. DRISCOLL AND KARA L. MAKI

fact that X2 = Xb, we compute
b~ ~~

Var [Pb] 2M2 _ v [Xb(S())]

_ ____ / E~ [x12 Pb
- 2~M (E [Xb [XbII -- W M (1- bAwb).

Under equidistributed sampling with PbWb = 1/B, this gives a coefficient of variation

I Pb(l PbWb) _ B I
Pb lWbM_

which is also independent of the bin index. We have therefore confirmed the guiding
heuristic that equidistribution is ideal for sampling across the entire pdf. This idea is
referred to in statistical physics as multicanonical Monte Carlo (MMC), sampling-.

A reality check is in order, because the perfect equidistribution weights Wb
(BPb)-1 are unknown unless the Pb themselves are already- known! Fortunately, the

Monte Carlo experiment itself gives us some estimates of them, and this. f4et allows
us to set up an iteration. Given somne estimatesp Pj.... ,PB,j to the exac-t values
P1,.. .,PB, we tpproximate the perfect weights Wb = (BPb) 'by

(4.6) Wb,j b- ..., B
Pb,j

where -yj is used to enforce the normalization (4.2). Equation (4.6) explains why the
histogram values. Pb,3 are often called inverse weights in the Multicanonical method.
The weighta in turn- define a reweighted pdf

'yj-7r(X) (4.7) tj(x) = B

E~ pb,jX (x),
b=1

which is used to draw samples and create- Monte Carlo estimates

M

(4.8) Pb,j = M Xb())
m=1

Based on, (4-.4), our new estimate for the desired Pb is

Pb,j Pb,jPb,.j;
Wb,j 'jY

Tbis seems; like a natural choice for Pb,j+1, so that liedbackW ito the next rowid of
weights is closed and the iteration is completely defined. A sensible way to, iniialize
the iteration is to choose Pb,o = 1/B, which leads to Wb,O = 1, i.e., unbiased smplng.

Conceptually, then, we can start with Monte Caxlo sampling as usual,, pause to
assess the computed histogram, adjust the way we sample by trying to more heavily
weight underrepresented bins, and iterate. The specific form of (4.9), however, is
fatally flawed asJ a dAefinition of Pb,+. The most glaring problem is t'ht Pb,j will
be zero ifbin b is never hit during iteration; j, asnd (4.9) would then, leave Wb,j;+1

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 683

undefined. A more subtle problem is that (4.9) can lead to overcompensation in the
weights and may not allow the iteration to lock into the desired equidistribution.

Berg [2, 16] proposed a modified iteration that avoids the empty-bin problem and
improves reliability. Berg's iteration posits a nearly exponential histogram, which

means that the ratios of adjacent values, rb,J - Pb+1,j/Pb,j, are nearly constant. (This
assumption holds well only in some applications, such as those for which Berg derived
the iteration, but the method appears to work well in other circumstances also.) The
iteration focuses on these ratios rather than the values themselves. In our notation,
Berg's iteration is

(rb,j
if Pb,j Pb-l-,i -0,

(4.10) rbJ1 [Pb?,
rb,J Pb, J otherwise.

The first option says that if either bin defining rb,j fails to get hit during iteration j,
we have insufficient data to justify changing its value. Otherwise, if during iteration
j bin (b + 1) gets hit more often than does bin b, its inverse weight will be relatively
larger in the next iteration, so its weight is reduced. The exponent 9b,j is computed
in such a manner as to smooth the iteration by accounting for the history of previous
iterations, specifically via

(4.11) 9b, = 9gb,j - fMPb+Pb if Pb,j > 0 and Pb+-,j > 0,

LvV=O 9b,v 0 otherwise.

These formulas determine the ratios rb,j+l for b =1, . -. ., B-1, which in turn de
termine the new generation of inverse weights Pb,j+1 up to a constant scaling factor.
Finally, that factor is determined by the normalization Eb Pb,j+1 1.

Even with Berg's improved iteration strategy, we are left with some serious issues.
Most importantly, how do we go about actually drawing samples from the modified
probability distribution 7rj? In the growth factor problem, for example, it is not at
all clear how to preferentially select matrices whose growth factors lie in a particular
bin. Another significant detail is that we cannot compute the normalization constant

-yj in (4.7) without knowledge of the exact Pb values. In the next section we show
how these issues may be overcome.

5. Markov Chain Monte Carlo (MCMC). The final piece of our puzzle is the
Markov chain. Markov chains are a common way to implement Monte Carlo exper
iments, leading to what is widely known as the MCMC method [4, 24]. The MMC
variant takes Markov chain implementation for granted, as there is no general alter
native for the histogram-based biasing it requires.

A Markov chain is a rule for producing random sequences of elements (usually
called states) from the space Q. The chain is defined by an initial state and by
specifying a transition kernel K(x, y), which describes the likelihood of the chain
changing from state x to state y in one step. That is, if state m is chosen according
to the pdf m, then the pdf of state (m + 1) is

(5.1) Om+ I(Y) j Om (X)K(x, y) dx.

If the state space Q is finite, then the pdf of a state is a vector whose elements sum
to one, K is a matrix, and (5.1) is just a matrix-vector multiplication.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

684 TOBIN A. DRISCOLL AND KARA L. MAKI

Markov chains have many interesting properties [9, 19], but we are going to exploit
just two of them here. First, under some mild conditions on K, all Markov chains
have a stationary distribution whose pdf -F0 is defined by

(5.2) j no(x)K(x, y) dx tro(y), yC Q.

Thus, if one state of the chain is distributed according to 7r0, then the next state is too.
(In the finite case, n0 is an eigenvector of the transition matrix K.) The stationary
distribution is analogous to a steady or equilibrium state in a time-dependent process.

The second property we need from Markov chains continues this analogy: the
distribution of state m resembles the stationary distribution as m -? oo. That is, the
chain eventually "forgets" where it started and churns out states as though they were
being drawn in accordance with 7r0. More precisely, we need the ergodic theorem,
which states that for any function f, the Monte Carlo estimates for f based on M
states of the chain converge (with probability one) as M -+ oc to the expected value
of f under nr0.

In the previous section, we set the goal of drawing states from a distribution -rj
defined by reweighting bins of the histogram. Our method will be to make 7rj the
stationary distribution of a realizable Markov chain and then use the states of the
chain to provide samples for our statistics. There are multiple practical ways to do
this. We resort to one of the oldest and most popular, known as the Metropolis
Hastings sampler [4, 6, 13, 17]. Given a state x, the Metropolis-Hastings sampler
creates a "proposed" state y according to a proposal transition probability q(x, y).
The chain "accepts" the proposal with a probability given by the number

f ij (y) q (y, x)a
(5.3) oa(x, y) =min , (x) q (x, y)

If the proposal is accepted, the next state of the Markov chain is y; otherwise, it is x
again.

There are many choices for the proposal density q(x, y); we discuss ours for the
random walk in section 6 and for growth factors in section 7. There is no hard rule
on how to choose q, but it is standard to favor choosing a y that makes only minor
changes to x, in keeping with the idea of exploring state space by incremental steps.

We are in effect betting that extremely rare cases are found close to the merely rare
cases in state space.

Our proposal densities do satisfy the fairly common assumption of symmetry,
specifically, q(y, x) = q(x, y). This property is not necessary, but it does make q drop
out of the acceptance probability (5.3). Substituting (4.7), we have

(5.4) a(x,y) = min {1 7r(y) EbPb,jXb() }
)1F(X) Eb Pb,jXb(Y)

Observe that our last obstacle has been cleared: the unknown normalization -yj has
completely canceled out.

The acceptance probability (5.4) can be interpreted intuitively. Its value is deter
mined by the values of the histogram in the two bins occupied by the current state
x and the proposal y. When the histogram is smaller for the proposed y's bin than
for x's, the chances of acceptance increase. Conversely, a larger histogram value for
the proposal decreases its chance of acceptance. This combination creates a ratchet
effect that locks in any proposal that drifts into a bin that seems, so far, less likely to
be visited i.e., the tail of the distribution.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 685

6. An Example: The Random Walk. To illustrate the MCMC method in the
context of multicanonical sampling, we return to the random walk of N steps shown
in Figure 2. Recall that in this example, each element x of the state space Q has

N bits (representing coin tosses) whose entries are 0 (tails) or 1 (heads), and the
variable p to be measured is the sum of the elements of x. For this problem we choose
a proposal q(x, y) such that

I f/N if x and y differ in exactly one bit,

0, y=l otherwise.

In other words, we randomly select a bit from x and change it to get y. It is clear
that q(x, y) = q(y, x), as needed in (5.4). Also note that for this problem the original
distribution of states 7V is uniform, so that 7r(x) = 7r(y) in (5.4).

A working MATLAB script for the multicanonical iteration is shown in Figure 4,
including the Berg variant of the biasing weights. The process starts with a flat
histogram. The outer loop represents the MMC iteration, which initializes the state x

(and, for efficiency, all random values needed by the Markov chain), runs the Markov

chain, and performs the Berg update on the histogram. Within the Markov chain can
be seen a proposed state, found by toggling the result of one randomly chosen coin
flip, followed by computation of its Metropolis-Hastings acceptance probability and
the acceptance decision. The Berg update is based on (4.10) and (4.11); the ratios

rb,j are removed in favor of updating the histogram values themselves directly.
Our Markov chain features a burn-in period during which statistics are not col

lected. The burn-in period is an attempt to let the chain get close to its asymptotic
stationary distribution, or "forget" the selection of its initial state. Ensuring or veri
fying the stationarity of the Markov chain is one of the most difficult and controversial
aspects of MCMC simulation, with a growing body of literature devoted to it [4, 5, 7].
In finite state spaces possessing a smallest and largest element, Propp and Wilson [18]
famously showed that one can determine with precision how to sample exactly from
the stationary distribution. One can even find respectable arguments asserting that
burn-in is totally unnecessary in general [11]. Our approach to burn-in is conservative
and computationally intensive: we experimented until increasing the burn-in time had
no noticeable effect on our results. For this and the growth factor experiments, the
burn-in time represents 50% of the computation.

At the end of the script, each column of the variable p represents the histogram
found in one MMC iteration. Figure 5 shows the evolution of the histogram over 20
iterations. The flat initial histogram corresponds to unbiased Monte Carlo simulation,
so that the most frequently observed cases are found early, as in Figure 2. The MMC
iteration then weights the unsampled bins much more highly, increasing the likelihood
of penetration into the tails of the pdf. By the end of the 20th iteration the histogram
is well approximated to graphical accuracy over the entire distribution. The entire
state space of over 1030 elements has been well sampled using just 2 million states,
including those discarded during burn-in periods.

7. Algorithm for Growth Factors. Our MATLAB code for growth factor exper
iments is very similar to that in Figure 4. One minor difference is that our original ma
trix distribution (3.1) is not uniform, so that the ratio rr(y)/wr(x) in (5.4) is nontrivial.
The most important difference, though, is in the selection of the Metropolis-Hastings

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

686 TOBIN A. DRISCOLL AND KARA L. MAKI

N = 100; % number of walking steps
B = N+1; % number of bins
M = 5e4; % length of MCMC chaincode
burnin = M; % burn-in period for chains
Niter = 20; % MMC iterations
p = ones(B,Niter+1)/B; % computed histograms
hit = zeros(B,1); 'A hits in each bin for current iter.

randn('state',sum(100*clock)); rand('state',sum(100*clock));

% *** Start MMC iterations ***
for j = 1:Niter

x = double(rand(l,N)>0.5); bin_x = 1+sum(x);
index = ceil(N*rand(1,M+burnin)); % all proposal indices
acceptval = rand(1,M+burnin); % all acceptance tests
for m = 1:M+burnin % Markov chain begins

y = x; y(index(m)) = 1-x(index(m)); % proposal changes one flip
bin_y = 1+sum(y);

% Accept proposal?
alpha = min(1, p(bin_x,j)/p(bin_y,j));
if acceptval(m) < alpha

x = y; bin_x = bin_y;

end

% Record statistics (after burn-in).
if m > burnin, hit(bin_x) = hit(bin-x)+l; end

end % Markov chain

% Berg update.
pnew = p(:,j); % new inverse weights
for b=l:B-1

if (hit(b+1)*hit(b) == 0)
pnew(b+1) = pnew(b)*(p(b+1,j)/p(b,j));

else
g(b,j) = hit(b+l)*hit(b) / (hit(b+1)+hit(b));
g_hat(b) = g(b,j)/sum(g(b,1:j));
pnew(b+1) = pnew(b)*(p(b+l,j)/p(b,j))*((hit(b+l)/hit(b))-g-hat(b));

end
end
p(:,j+l) = pnew/sum(pnew); % normalize histogram
hit(:) = 0; % reset hit counter

end % MMC iteration

Fig. 4 MATLAB script for an MMC iteration applied to the random walk.

proposal density q(x, y). We have chosen a random walk model, in which

(7.1) q(x, y) f y),

where f is a student's t-distribution with 8 degrees of freedom and a is a parameter
to be explained in the next paragraph. Compared to a normal distribution for f, the
t-distribution's larger tails were found to improve the rate at which the Markov chains
approach stationarity. In practice, to get the proposal y we scale by uf a matrix whose

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 687

10

CN 10

-30~~~~~~

MMC iteration p

Fig. 5 Evolution of the pdf histogram with the MMC iteration for the random walk with N = 100

coin tosses. (Circles show the computations; the solid curves are copies of the exact pdf.)

Initially the histogram is flat. The most frequently observed cases are found first, around the

center of the distribution. Then the iteration progresses into the tails.

entries are drawn from the t-distribution using trnd in MATLAB, and add it to x.
Note that q(y, x) = q(x, y), as we have required.

Initially we let af = 1/n for experiments on n x n matrices. We update a based
on the acceptance rate the proportion of Metropolis-Hastings proposals that are
accepted as steps. Roberts, Gelman, and Gilks [20] recommended an acceptance rate
of roughly 25%. If during burn-in we find an acceptance rate greater than 40%, we
interpret the proposals as too conservative and we increase a. Conversely, if the
acceptance rate falls below 10%, we decrease a. Overall we see a decrease as states
get into the tail, because once there large perturbations almost always propose states
with more common growth factors, and the acceptance rate drops.

Figure 6 shows one evolution of the histogram over 50 iterations in the case of 8 x 8
matrices. For this run MMC makes excellent progress into the tail for the first ten or
so iterations, then stagnates for another 20 iterations before reaching a breakthrough
and continuing progress. During the stagnation the proposal acceptance rate stayed
mostly between about 30% and 65%, only once getting small enough to trigger a
reduction in a. Without generalizing too much from one example, this suggests that
our simple proposal adaptation strategy may not be completely effective. The value
of a at the end of the iteration was about 3 x 10-5.

The U factor of the final matrix of the experiment was (after normalization by
the largest element)

0.5361 0.157 0.2923 0.1393 0.1605 -0.01271 -0.04148 1
-0.3612 0.1187 0.03457 0.4437 -0.08554 0.2254 -1.989

-0.596 0.3819 0.2222 -0.1974 0.01469 3.974
0.4361 0.4217 0.1419 -0.2547 -6.988

-0.2346 0.06456 -0.03672 14.11
-0.3469 -0.0373 -25.56

0.6609 -50.03
-99.65

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

688 TOBIN A. DRISCOLL AND KARA L. MAKI

10-20_

~0

10-40

10~~~~~~~~~~~~~~~~~

0 20 40 60 80 0 ~ ~~~~~~~~~~~~iteration 10 50
growth factor

Fig. 6 Evolution of the pdf histogram for the growth factors of 8 x 8 matrices.

The last column of this factor (ignoring signs) looks much like that in the worst-case
scenario of (2.3), with an imperfect doubling in magnitude from each row to the next.
Theorem 2.2 of [15] explains that this is always the case.

The last change to our code over the basic format in Figure 4 was to try different
restarting strategies between MMC iterations. Rather than always reinitializing with
a matrix drawn randomly from wF, we instead can start with an arbitrary matrix with
a known growth factor po, using the aforementioned theorem from [15]. By varying
p0 for different runs of the algorithm, we get some diagnostic information about the
extent to which the starting points of the Markov chains influences the results that
is, the extent to which the Markov chains have not reached stationarity.

The code we used for our experiments in the next section is available for download
at the MATLAB Central website, from the URL http://tinyurl.com/nt58u.

8. Results. We ran our algorithm in MATLAB on random matrices of dimensions
8, 16, and 32. The computations were done in parallel on a 24-node Opteron cluster
using the Distributed Computing Toolbox. Each instance was run for 70 MMC iter
ations, each iteration drawing one million matrices, including burn-in. As described
at the end of section 7, for each matrix size we ran multiple independent instances
using different reinitialization strategies between MMC iterations: one case with no
reinitialization, one case with reinitialization drawn from the original distribution wF,
and ten cases with randomly constructed matrices, each case starting with a speci
fied growth factor p0, where the ten runs chose different values of p0 at well-spread
locations.

All of the histograms resulting from our runs are shown in Figure 7. The leveling
off of each curve shows the farthest point in the tail visited by that MMC realization.

While the extent of penetration varies widely from run to run, the various instances
agree well for most of those parts of the histograms based on visited bins. Furthermore,
there is no observable correlation between the reinitialization strategy and the depth
of penetration into the tail. We take these observations as positive indications that

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 689

n=8
100

.
10-20

co
0
n -40 C. 10

1 o-60
0 10 20 30 40 50 60 70 80 90 100

p
n=16

0

a 10

?-10

1 o-60
0 100 200 300 400 500 600 700 800 900 1000

p
n=32

10?

1~20
-40

,, 10

-0
160 2 0

1 -80

10
1 o-1oo

0 500 1000 1500 2000 2500 3000 3500 4000 4500
p

Fig. 7 Pdfs for growth factors of random matrices of dimension 8, 16, and 32. The different curves

represent independent runs of the MMC iteration using different MCMC reinitializations,
as explained in the text.

the results of our Markov chains are not strongly dependent on their starting points,

i.e., that the burn-in times were sufficient.
We feel justified, for example, in estimating the probability of encountering a

not-very-damaging growth factor p = 40 to be about 10-20 in the 8 x 8 case. By

comparison, there are believed to have been only 1017 or so seconds since the beginning

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

690 TOBIN A. DRISCOLL AND KARA L. MAKI

8~~~~~~~~~~~~~~ I I I \
10 :\

102

-n=l16

C~~~~~~~~~~~

10g.
. li e.ho.u.bs.df.ogr w h fa t r.o.ado.ari e.it.ien i n

Z-4 ~~~~~~n=32
E 10 co ~~n=8
0

-8 ..6, ..and ...32slt fou o li e r is to t e daa s i e

10.

1 01

0 5 10 15 20 25 30 35
p

Fig. 8 The colored lines show our best pdfs for growth factors of random matrices with dimensions

8, 16, and 32. Dashed black lines show the results of our nonlinear fits to the data, as given

by (8.1) and explained in the text.

of the universe! Moreover, even with a concerted effort to exert significant bias in our

explorations of the state spaces, none of our experiments ever encountered a matrix
in the bin containing the maximum achievable growth factor.

In Figure 8 we exhibit our data for dimensions 8, 16, and 32 down to a probability

level of 10-12. These were found by averaging the results of individual trials. Based

on the excellent agreement in Figure 7 down to this level, we feel confident about

these results in terms of the accuracy of the graph (except for the leveling off for

small values of p, which were not a focus of the study). One can check that they also

match well the unbiased Monte Carlo experiments shown in Figure 3.

Figure 8 also shows the results of fitting a function of the form

(8.1) f (p) = a, exp (-a2pa3)

to the tail end of each computed curve. (Such a functional form is compatible with the

decay rates predicted in [21], as mentioned in section 2.) The parameters were found

by applying MATLAB's lsqnonlin to find the minimum least-squares difference be

tween log f and the log of the computed data. The black dashed curves show the part

of the data selected and the resulting fit. The fitting parameters are shown in Table 1.

9. Conclusions. The MCMC method is a common and practical way to explore
the distributions of random variables over large state spaces. The multicanonical
variant from statistical physics aims to correct its greatest weakness, the exploration

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

RARE GROWTH FACTORS USING MONTE CARLO METHODS 691

Table I Least-squares parameters for the fitting function (8.1), for the data shown in Figure 8.

n al a2 a3

8 30006 9.8309 0.48683
16 30006 9.8490 0.42079
32 30007 8.8811 0.41239

of rare events. Multicanonical MCMC (we resist, but only barely, the temptation
to call it (MC)3) accomplishes this in a way that does not require insights into the
random process being evaluated. Instead, one only needs the ongoing results of the
experiment in order to adjust the sampling process. This makes the method widely
applicable with little adjustment indeed, our code could easily be modified to change
the state space to complex, Toeplitz, symmetric, banded, or orthogonal matrices, or
to change the random variable to, say, condition numbers rather than growth factors.

Of course, the results of MCMC iterations are, in most cases, not rigorous. Fur
thermore, these methods offer many choices and parameters that can have strong
effects on the quality and speed of the results. The references give some recommen
dations on how to choose these, but wide variations of opinions can be found. In our
experience the most important choice is the Metropolis-Hastings proposal density
q(x, y), which must strike a balance between minuscule changes to the current state,
leaving too much unexplored, and major changes that usually lead out of the tail and
get rejected. Nor can issues of Markov chain initialization, convergence, and diagnos
tics be overlooked. Still, as a tool for the difficult problem of simulating rare events,
the multicanonical method puts one in mind of another line from Hamlet: "Though
this be madness, yet there is method in 't."

Acknowledgment. We are grateful to Nick Trefethen for his enthusiastic and
insightful feedback.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users'

Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] B. A. Berg, Introduction to multicanonical Monte Carlo simulations, Fields Inst. Commun.,
26 (2000), pp. 1-24.

[3] C. B. BOYER, A History of Mathematics, John Wiley & Sons, New York, 1991.

[4] S. P. Brooks, Markov chain Monte Carlo method and its application, The Statistician, 47

(1998), pp. 69-100.

[5] S. P. Brooks and G. O. Roberts, Convergence assessment techniques for Markov chain
Monte Carlo, Statist. Comput., 8 (1998), pp. 319-335.

[6] S. Chib and E. Greenberg, Understanding the Metropolis-Hasting s algorithm, Amer. Statist.,
49 (1995), pp. 327-335.

[7] M. K. Cowles and B. P. Carlin, Markov chain Monte Carlo convergence diagnostics: A

comparative review, J. Amer. Statist. Assoc, 91 (1996), pp. 883-904.

[8] J. W. Demmel, Applied Numerical Linear Alegbra, SIAM, Philadelphia, 1997.

[9] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev., 41 (1999), pp. 45-76.

[10] L. V. FOSTER, Gaussian elimination with partial pivoting can fail in practice, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 1354-1362.

[11] C. Geyer, Burn-in is unnecessary, available online from http://www.stat.umn.edu/~charlie/
mcmc/burn.html.

[12] G. Golub and C. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,

Baltimore, MD, 1996.

[13] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika, 57 (1970), pp. 97-109.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

692 TOBIN A. DRISCOLL AND KARA L. MAKI

[14] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

[15] N. J. Higham and D. J. Higham, Large growth factors in Gaussian elimination with pivoting,
SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155-164.

[16] R. Holzl?hner and C. R. Menyuk, Use of multicanonical Monte Carlo simulations to ob
tain accurate bit error rates in optical communications systems, Optics Lett., 28 (2003),
pp. 1894-1896.

[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

Equations of state calculations by fast computing machines, J. Chem. Phys., 21 (1953),
pp. 1087-1092.

[18] J. G. Propp and D. B. Wilson, Exact sampling with coupled Markov chains and applications
to statistical mechanics, Random Structures Algorithms, 9 (1996), pp. 223-252.

[19] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed., Springer-Verlag,
New York, 2004.

[20] G. O. Roberts, A. Gelman, and W. R. Gilks, Weak convergence and optimal scaling of
random walk Metropolis algorithms, Ann. Appl. Probab., 7 (1997), pp. 110-120.

[21] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[22] L. N. Trefethen and R. S. Schreiber, Average-case stability of Gaussian elimination, SIAM
J. Matrix Anal. Appl., 11 (1990), pp. 335-360.

[23] S. Ulam, Adventures of a Mathematician, University of California Press, Berkeley, CA, 1991.

[24] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in

Practice, 1st ed., Chapman & Hall, Boca Raton, FL, 1996.

[25] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York,
1965.

[26] S. J. Wright, A collection of problems for which Gaussian elimination with partial pivoting
is unstable, SIAM J. Sei. Comput., 14 (1993), pp. 231-238.

This content downloaded from 128.175.16.157 on Fri, 28 Jun 2013 12:58:22 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 673
	p. 674
	p. 675
	p. 676
	p. 677
	p. 678
	p. 679
	p. 680
	p. 681
	p. 682
	p. 683
	p. 684
	p. 685
	p. 686
	p. 687
	p. 688
	p. 689
	p. 690
	p. 691
	p. 692

	Issue Table of Contents
	SIAM Review, Vol. 49, No. 4 (Dec., 2007), pp. i-viii, 543-740
	Volume Information
	Front Matter
	Survey and Review
	Introduction [pp. 543-543]
	Stability Criteria for Switched and Hybrid Systems [pp. 545-592]

	Problems and Techniques
	Introduction [pp. 593-593]
	Revisiting Hypergraph Models for Sparse Matrix Partitioning [pp. 595-603]
	Adaptive Polynomial Interpolation on Evenly Spaced Meshes [pp. 604-627]
	Uniform Asymptotics Applied to Ultrawideband Pulse Propagation [pp. 628-648]

	Sigest
	Introduction [pp. 649-649]
	A Sum of Squares Approximation of Nonnegative Polynomials [pp. 651-669]

	Education
	Introduction [pp. 671-671]
	Searching for Rare Growth Factors Using Multicanonical Monte Carlo Methods [pp. 673-692]

	Book Reviews
	Introduction [pp. 693-693]
	Featured Review: Three Books on Asymptotics [pp. 695-695]
	Review: untitled [pp. 695-696]
	Review: untitled [pp. 696-697]
	Review: untitled [pp. 697-698]
	Review: untitled [pp. 698-700]
	Review: untitled [pp. 700-702]
	Review: untitled [pp. 702-703]
	Review: untitled [pp. 703-706]
	Review: untitled [pp. 706-707]
	Review: untitled [pp. 707-708]
	Review: untitled [pp. 708-711]
	Review: untitled [pp. 711-712]
	Review: untitled [pp. 712-713]
	Review: untitled [pp. 713-715]
	Review: untitled [pp. 715-716]
	Review: untitled [pp. 716-717]
	Review: untitled [pp. 717-719]
	Review: untitled [pp. 719-721]
	Review: untitled [pp. 721-721]
	Review: untitled [pp. 721-722]
	Review: untitled [pp. 722-725]
	Review: untitled [pp. 726-727]
	Review: untitled [pp. 727-728]
	Review: untitled [pp. 729-732]

	Back Matter

